TY - JOUR
T1 - Homeostatic dysregulation proceeds in parallel in multiple physiological systems
AU - Li, Qing
AU - Wang, Shengrui
AU - Milot, Emmanuel
AU - Bergeron, Patrick
AU - Ferrucci, Luigi
AU - Fried, Linda P.
AU - Cohen, Alan A.
N1 - Funding Information:
AAC is a member of the FRQ-S-supported Centre de recherche sur le vieillissement and Centre de recherche du CHUS, and is a funded Research Scholar of the FRQ-S. This research was supported by CIHR grant #s 110789, 120305, 119485 and by NSERC Discovery Grant # 402079-2011, as well as by the Intramural Research Program of the National Institute on Aging.
Publisher Copyright:
© 2015 The Anatomical Society and John Wiley & Sons Ltd.
PY - 2015/12/1
Y1 - 2015/12/1
N2 - An increasing number of aging researchers believes that multi-system physiological dysregulation may be a key biological mechanism of aging, but evidence of this has been sparse. Here, we used biomarker data on nearly 33 000 individuals from four large datasets to test for the presence of multi-system dysregulation. We grouped 37 biomarkers into six a priori groupings representing physiological systems (lipids, immune, oxygen transport, liver function, vitamins, and electrolytes), then calculated dysregulation scores for each system in each individual using statistical distance. Correlations among dysregulation levels across systems were generally weak but significant. Comparison of these results to dysregulation in arbitrary 'systems' generated by random grouping of biomarkers showed that a priori knowledge effectively distinguished the true systems in which dysregulation proceeds most independently. In other words, correlations among dysregulation levels were higher using arbitrary systems, indicating that only a priori systems identified distinct dysregulation processes. Additionally, dysregulation of most systems increased with age and significantly predicted multiple health outcomes including mortality, frailty, diabetes, heart disease, and number of chronic diseases. The six systems differed in how well their dysregulation scores predicted health outcomes and age. These findings present the first unequivocal demonstration of integrated multi-system physiological dysregulation during aging, demonstrating that physiological dysregulation proceeds neither as a single global process nor as a completely independent process in different systems, but rather as a set of system-specific processes likely linked through weak feedback effects. These processes - probably many more than the six measured here - are implicated in aging.
AB - An increasing number of aging researchers believes that multi-system physiological dysregulation may be a key biological mechanism of aging, but evidence of this has been sparse. Here, we used biomarker data on nearly 33 000 individuals from four large datasets to test for the presence of multi-system dysregulation. We grouped 37 biomarkers into six a priori groupings representing physiological systems (lipids, immune, oxygen transport, liver function, vitamins, and electrolytes), then calculated dysregulation scores for each system in each individual using statistical distance. Correlations among dysregulation levels across systems were generally weak but significant. Comparison of these results to dysregulation in arbitrary 'systems' generated by random grouping of biomarkers showed that a priori knowledge effectively distinguished the true systems in which dysregulation proceeds most independently. In other words, correlations among dysregulation levels were higher using arbitrary systems, indicating that only a priori systems identified distinct dysregulation processes. Additionally, dysregulation of most systems increased with age and significantly predicted multiple health outcomes including mortality, frailty, diabetes, heart disease, and number of chronic diseases. The six systems differed in how well their dysregulation scores predicted health outcomes and age. These findings present the first unequivocal demonstration of integrated multi-system physiological dysregulation during aging, demonstrating that physiological dysregulation proceeds neither as a single global process nor as a completely independent process in different systems, but rather as a set of system-specific processes likely linked through weak feedback effects. These processes - probably many more than the six measured here - are implicated in aging.
KW - Aging
KW - Biomarker
KW - Homeostasis
KW - Multi-system dysregulation
KW - Physiology
KW - Statistical distance
UR - http://www.scopus.com/inward/record.url?scp=84954374841&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84954374841&partnerID=8YFLogxK
U2 - 10.1111/acel.12402
DO - 10.1111/acel.12402
M3 - Article
C2 - 26416593
AN - SCOPUS:84954374841
SN - 1474-9718
VL - 14
SP - 1103
EP - 1112
JO - Aging Cell
JF - Aging Cell
IS - 6
ER -