TY - JOUR
T1 - Homeostasis of phospholipids - The level of phosphatidylethanolamine tightly adapts to changes in ethanolamine plasmalogens
AU - Dorninger, Fabian
AU - Brodde, Alexander
AU - Braverman, Nancy E.
AU - Moser, Ann B.
AU - Just, Wilhelm W.
AU - Forss-Petter, Sonja
AU - Brügger, Britta
AU - Berger, Johannes
N1 - Funding Information:
The present study was funded by the Austrian Science Fund (FWF; P 24843-B24 to JB) and the European Union project “Peroxisome” ( LSHG-CHT-2004-512018 ). BB is supported by the Deutsche Forschungsgesellschaft (DFG; TRR83 ) and is a member of the Heidelberg Cluster of Excellence CellNetworks. The authors thank Iduna Liou, Fatma Erdem and Gerhard Zeitler for their experimental support as well as Christoph Wiesinger and Markus Kunze for helpful discussions and critical evaluation of the manuscript.
Publisher Copyright:
© 2014 Elsevier Ltd. All rights reserved.
PY - 2014/11/27
Y1 - 2014/11/27
N2 - Ethanolamine plasmalogens constitute a group of ether glycerophospholipids that, due to their unique biophysical and biochemical properties, are essential components of mammalian cellular membranes. Their importance is emphasized by the consequences of defects in plasmalogen biosynthesis, which in humans cause the fatal disease rhizomelic chondrodysplasia punctata (RCDP). In the present lipidomic study, we used fibroblasts derived from RCDP patients, as well as brain tissue from plasmalogen-deficient mice, to examine the compensatory mechanisms of lipid homeostasis in response to plasmalogen deficiency. Our results show that phosphatidylethanolamine (PE), a diacyl glycerophospholipid, which like ethanolamine plasmalogens carries the head group ethanolamine, is the main player in the adaptation to plasmalogen insufficiency. PE levels were tightly adjusted to the amount of ethanolamine plasmalogens so that their combined levels were kept constant. Similarly, the total amount of polyunsaturated fatty acids (PUFAs) in ethanolamine phospholipids was maintained upon plasmalogen deficiency. However, we found an increased incorporation of arachidonic acid at the expense of docosahexaenoic acid in the PE fraction of plasmalogen-deficient tissues. These data show that under conditions of reduced plasmalogen levels, the amount of total ethanolamine phospholipids is precisely maintained by a rise in PE. At the same time, a shift in the ratio between ω-6 and ω-3 PUFAs occurs, which might have unfavorable, long-term biological consequences. Therefore, our findings are not only of interest for RCDP but may have more widespread implications also for other disease conditions, as for example Alzheimer's disease, that have been associated with a decline in plasmalogens.
AB - Ethanolamine plasmalogens constitute a group of ether glycerophospholipids that, due to their unique biophysical and biochemical properties, are essential components of mammalian cellular membranes. Their importance is emphasized by the consequences of defects in plasmalogen biosynthesis, which in humans cause the fatal disease rhizomelic chondrodysplasia punctata (RCDP). In the present lipidomic study, we used fibroblasts derived from RCDP patients, as well as brain tissue from plasmalogen-deficient mice, to examine the compensatory mechanisms of lipid homeostasis in response to plasmalogen deficiency. Our results show that phosphatidylethanolamine (PE), a diacyl glycerophospholipid, which like ethanolamine plasmalogens carries the head group ethanolamine, is the main player in the adaptation to plasmalogen insufficiency. PE levels were tightly adjusted to the amount of ethanolamine plasmalogens so that their combined levels were kept constant. Similarly, the total amount of polyunsaturated fatty acids (PUFAs) in ethanolamine phospholipids was maintained upon plasmalogen deficiency. However, we found an increased incorporation of arachidonic acid at the expense of docosahexaenoic acid in the PE fraction of plasmalogen-deficient tissues. These data show that under conditions of reduced plasmalogen levels, the amount of total ethanolamine phospholipids is precisely maintained by a rise in PE. At the same time, a shift in the ratio between ω-6 and ω-3 PUFAs occurs, which might have unfavorable, long-term biological consequences. Therefore, our findings are not only of interest for RCDP but may have more widespread implications also for other disease conditions, as for example Alzheimer's disease, that have been associated with a decline in plasmalogens.
KW - Alzheimer's disease
KW - Arachidonic acid
KW - Compensation
KW - Docosahexaenoic acid
KW - Peroxisome
KW - Plasmalogen
UR - http://www.scopus.com/inward/record.url?scp=84964313918&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84964313918&partnerID=8YFLogxK
U2 - 10.1016/j.bbalip.2014.11.005
DO - 10.1016/j.bbalip.2014.11.005
M3 - Article
C2 - 25463479
AN - SCOPUS:84964313918
SN - 1388-1981
VL - 1851
SP - 117
EP - 128
JO - Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids
JF - Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids
IS - 2
ER -