Histochemical demonstration of hydrogen peroxide production by leukocytes in fixed-frozen tissue sections of inflammatory lesions

A. M. Dannenberg, B. H. Schofield, J. B. Rao, T. T. Dinh, K. Lee, M. Boulay, Y. Abe, J. Tsurata, M. J. Steinbeck

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


The production of H2O2 by cells in cold paraformaldehyde-fixed frozen sections of inflammatory lesions was histochemically demonstrated by incubating them with diaminobenzidine (DAB) for 2 to 6 h. Catalase (150 μg/ml, about 1400 U/ml) inhibited the reaction, indicating that H2O2 was required to produce the chromogenic DAB product. Granulocytes (PMNs and eosinophils) were the main types of cells stained by the DAB reaction. Positive staining of macrophages was less frequent. The H2O2 was produced by metabolic enzymes that were still active after cell death and mild fixation. An atmosphere of 95 to 100% oxygen enhanced the specific DAB reaction, and an atmosphere of 100% nitrogen eliminated it. The DAB histochemical reaction to detect H2O2 requires the presence of peroxidases to produce the colored reaction product. Within our tissue sections, such peroxidases were evidently present in excess, because addition of low concentrations of H2O2 significantly increased the reaction product. Although some of the H2O2 produced by the granulocytes may have been derived from the dismutation of superoxide (O2-), the NADPH oxidase pathway for O2- formation did not seem to be involved: NADPH oxidase, a rather labile enzyme, should not be active after mild fixation, and diphenyleneiodonium (100 μM), an inhibitor of flavine-requiring NADPH oxidase, did not inhibit the reaction. Reactive nitrogen intermediates were also not involved, because N(G)-monomethyl-L-arginine and N(G)-nitro-L-arginine methyl ester, inhibitors of nitric oxide synthetase, did not appreciably inhibit the reaction. We conclude that stable, non-flavine-requiring oxidases, possibly cyclooxygenases or lipoxygenases, produced the H2O2 measured histochemically by our DAB reaction. These studies were made on tissue sections of acute dermal inflammatory lesions produced in rabbits by the topical application of 1% sulfur mustard [bis(2-chloroethyl) sulfide] in methylene chloride. Both intact PMNs and disintegrating PMNs in the base of the crust produced H2O2. Despite the production of H2O2 and the presence of peroxidase activity, no tissue damage was seen microscopically near the H2O2-producing cells, which indicates that the tissues are well protected by the antioxidants present in this self-limiting inflammatory reaction.

Original languageEnglish (US)
Pages (from-to)436-443
Number of pages8
JournalJournal of Leukocyte Biology
Issue number4
StatePublished - 1994
Externally publishedYes


  • Catalase
  • Diamizobenzidine
  • Granulocytes (PMNs)
  • Macrophages
  • Nitric oxide
  • Sulfur mustard
  • Superoxide

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology
  • Cell Biology


Dive into the research topics of 'Histochemical demonstration of hydrogen peroxide production by leukocytes in fixed-frozen tissue sections of inflammatory lesions'. Together they form a unique fingerprint.

Cite this