High-temporal-resolution view of transcription and chromatin states across distinct metabolic states in budding yeast

Zheng Kuang, Ling Cai, Xuekui Zhang, Hongkai Ji, Benjamin P. Tu, Jef D. Boeke

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

Under continuous, glucose-limited conditions, budding yeast exhibit robust metabolic cycles associated with major oscillations of gene expression. How such fluctuations are linked to changes in chromatin status is not well understood. Here we examine the correlated genome-wide transcription and chromatin states across the yeast metabolic cycle at unprecedented temporal resolution, revealing a 'just-in-time supply chain' by which components from specific cellular processes such as ribosome biogenesis become available in a highly coordinated manner. We identify distinct chromatin and splicing patterns associated with different gene categories and determine the relative timing of chromatin modifications relative to maximal transcription. There is unexpected variation in the chromatin modification and expression relationship, with histone acetylation peaks occurring with varying timing and 'sharpness' relative to RNA expression both within and between cycle phases. Chromatin-modifier occupancy reveals subtly distinct spatial and temporal patterns compared to those of the modifications themselves.

Original languageEnglish (US)
Pages (from-to)854-863
Number of pages10
JournalNature Structural and Molecular Biology
Volume21
Issue number10
DOIs
StatePublished - Jan 1 2014

ASJC Scopus subject areas

  • Structural Biology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'High-temporal-resolution view of transcription and chromatin states across distinct metabolic states in budding yeast'. Together they form a unique fingerprint.

Cite this