@inproceedings{15c14d53ff0c4422b2dcf76c513c710b,
title = "High-resolution extremity cone-beam CT with a CMOS detector: Evaluation of a clinical prototype in quantitative assessment of bone microarchitecture",
abstract = "Purpose: A prototype high-resolution extremity cone-beam CT (CBCT) system based on a CMOS detector was developed to support quantitative in vivo assessment of bone microarchitecture. We compare the performance of CMOS CBCT to an amorphous silicon (a-Si:H) FPD extremity CBCT in imaging of trabecular bone. Methods: The prototype CMOS-based CBCT involves a DALSA Xineos3030 detector (99 μm pixels) with 400 μm-thick CsI scintillator and a compact 0.3 FS rotating anode x-ray source. We compare the performance of CMOS CBCT to an a- Si:H FPD scanner built on a similar gantry, but using a Varian PaxScan2530 detector with 0.137 mm pixels and a 0.5 FS stationary anode x-ray source. Experimental studies include measurements of Modulation Transfer Function (MTF) for the detectors and in 3D image reconstructions. Image quality in clinical scenarios is evaluated in scans of a cadaver ankle. Metrics of trabecular microarchitecture (BV/TV, Bone Volume/Total Volume, TbSp, Trabecular Spacing, and TbTh, trabecular thickness) are obtained in a human ulna using CMOS CBCT and a-Si:H FPD CBCT and compared to gold standard μCT. Results: The CMOS detector achieves ∼40% increase in the f20 value (frequency at which MTF reduces to 0.20) compared to the a-Si:H FPD. In the reconstruction domain, the FWHM of a 127 μm tungsten wire is also improved by ∼40%. Reconstructions of a cadaveric ankle reveal enhanced modulation of trabecular structures with the CMOS detector and soft-tissue visibility that is similar to that of the a-Si:H FPD system. Correlations of the metrics of bone microarchitecture with gold-standard μCT are improved with CMOS CBCT: from 0.93 to 0.98 for BV/TV, from 0.49 to 0.74 for TbTh, and from 0.9 to 0.96 for TbSp. Conclusion: Adoption of a CMOS detector in extremity CBCT improved spatial resolution and enhanced performance in metrics of bone microarchitecture compared to a conventional a-Si:H FPD. The results support development of clinical applications of CMOS CBCT in quantitative imaging of bone health.",
keywords = "CMOS, bone microarchitecture, cone-beam CT, extremities imaging",
author = "Q. Cao and M. Brehler and {Sisniega Crespo}, Alejandro and S. Tilley and {Shiraz Bhruwani}, {M. M.} and Stayman, {J. W.} and J. Yorkston and Siewerdsen, {J. H.} and W. Zbijewski",
note = "Funding Information: Email:
[email protected]; phone 410-955-1319; fax 410-955-9826; Work supported by NIH Grant R01-EB-018896. Publisher Copyright: {\textcopyright} 2018 SPIE.; Medical Imaging 2018: Physics of Medical Imaging ; Conference date: 12-02-2018 Through 15-02-2018",
year = "2018",
doi = "10.1117/12.2293810",
language = "English (US)",
series = "Progress in Biomedical Optics and Imaging - Proceedings of SPIE",
publisher = "SPIE",
editor = "Schmidt, {Taly Gilat} and Guang-Hong Chen and Lo, {Joseph Y.}",
booktitle = "Medical Imaging 2018",
}