Heterozygous loss of Engrailed-1 and α-synucleinopathy (En1/SYN): A dual-hit preclinical mouse model of Parkinson's disease, analyzed with artificial intelligence

Lucas Stetzik, Gabriela Mercado, Jennifer A. Steiner, Allison Lindquist, Carla Gilliland, Emily Schulz, Lindsay Meyerdirk, Lindsey Smith, Jeremy Molina, Darren J. Moore

Research output: Contribution to journalArticlepeer-review

Abstract

In this study, we develop and validate a new Parkinson's disease (PD) mouse model that can be used to better understand how the disease progresses and to test the effects of new, potentially disease-modifying, PD therapies. Our central hypothesis is that mitochondrial dysfunction intercalates with misfolded α-synuclein (α-syn) accumulation in a vicious cycle, leading to the loss of nigral neurons. Our hypothesis builds on the concept that PD involves multiple molecular insults, including mitochondrial dysfunction and aberrant α-syn handling. We predicted that mitochondrial deficits, due to heterozygous loss of Engrailed-1 (En1+/−), combined with bilateral injections of pathogenic α-syn fibrils (PFFs), will act to generate a highly relevant PD model – the En1/SYN model. Here, En1+/− mice received bilateral intrastriatal stereotaxic injections of either PBS or α-syn fibrils and were analyzed using automated behavioral tests and deep learning-assisted histological analysis at 2, 4, and 6 months post-injection. We observed significant and progressive Lewy body-like inclusion pathology in the amygdala, motor cortex, and cingulate cortex, as well as the loss of tyrosine hydroxylase-positive (TH+) cells in the substantia nigra. The En1/SYN model also exhibited significant motor impairments at 6 months post-injection, which were however not exacerbated as we had expected. Still, this model has a comprehensive number of PD-like phenotypes and is therefore superior when compared to the α-syn PFF or En1+/− models alone.

Original languageEnglish (US)
Article number106647
JournalNeurobiology of Disease
Volume200
DOIs
StatePublished - Oct 1 2024

Keywords

  • AI
  • Alpha synuclein
  • Behavior
  • engrailed1
  • Preclinical

ASJC Scopus subject areas

  • Neurology

Fingerprint

Dive into the research topics of 'Heterozygous loss of Engrailed-1 and α-synucleinopathy (En1/SYN): A dual-hit preclinical mouse model of Parkinson's disease, analyzed with artificial intelligence'. Together they form a unique fingerprint.

Cite this