TY - JOUR
T1 - Heterologous vaccination (ChAdOx1 and BNT162b2) induces a better immune response against the omicron variant than homologous vaccination
AU - Yoo, Jaeeun
AU - Kim, Younjeong
AU - Cha, Yu mi
AU - Lee, Jaewoong
AU - Jeong, Yeon Jeong
AU - Kim, Si Hyun
AU - Maragakis, Lisa L.
AU - Lee, Seungok
N1 - Publisher Copyright:
© 2023 The Author(s)
PY - 2023/10
Y1 - 2023/10
N2 - Background: The ongoing COVID-19 pandemic has seen the emergence of numerous novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. In this study, we compared the efficacy of three different forms of immunization against the wild-type, delta, and omicron variants of the virus: two doses of the BNT or AZ vaccine (BNT/BNT or AZ/AZ) as homologous vaccination, three doses of AZ/AZ/BNT as heterologous vaccination, and naturally occurring immunization in severe COVID-19 cases. Methods: We collected serum samples from vaccine recipients (67 receiving BNT/BNT, 111 receiving AZ/AZ, and 18 receiving AZ/AZ/BNT) and 46 patients who were admitted to the hospital with severe COVID-19. Blood samples were taken one month after the last injection and the efficacy of the vaccination was determined using the surrogate virus neutralization test (sVNT), with a positive result defined as an inhibition rate of over 30%. Serum samples from COVID-19 patients were taken at various points during their hospitalization and tested for inhibition rates. Results: Our results indicated that there was no notable difference in the levels of neutralizing antibodies (nAb) in vaccine recipients and patients against the wild-type and delta variants. However, when it came to the omicron variant, the vaccine recipients had significantly lower nAb titers. Among the vaccine recipients, those who received a booster dose of BNT after their first two doses of AZ (AZ/AZ/BNT) demonstrated the highest level of protection against the omicron variant at 44.4%, followed closely by the COVID-19 patients. In analyzing the serial samples taken from hospitalized COVID-19 patients, we observed that their inhibition rates against the wild-type and delta variants improved over time, while the inhibition rate against the omicron variant decreased. Conclusion: In conclusion, our findings suggest that heterologous booster vaccination after primary vaccination produces higher nAb titers and provides a higher level of protection against the omicron variant compared to primary vaccination alone. This protective effect was similar to that observed in patients with severe COVID-19.
AB - Background: The ongoing COVID-19 pandemic has seen the emergence of numerous novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. In this study, we compared the efficacy of three different forms of immunization against the wild-type, delta, and omicron variants of the virus: two doses of the BNT or AZ vaccine (BNT/BNT or AZ/AZ) as homologous vaccination, three doses of AZ/AZ/BNT as heterologous vaccination, and naturally occurring immunization in severe COVID-19 cases. Methods: We collected serum samples from vaccine recipients (67 receiving BNT/BNT, 111 receiving AZ/AZ, and 18 receiving AZ/AZ/BNT) and 46 patients who were admitted to the hospital with severe COVID-19. Blood samples were taken one month after the last injection and the efficacy of the vaccination was determined using the surrogate virus neutralization test (sVNT), with a positive result defined as an inhibition rate of over 30%. Serum samples from COVID-19 patients were taken at various points during their hospitalization and tested for inhibition rates. Results: Our results indicated that there was no notable difference in the levels of neutralizing antibodies (nAb) in vaccine recipients and patients against the wild-type and delta variants. However, when it came to the omicron variant, the vaccine recipients had significantly lower nAb titers. Among the vaccine recipients, those who received a booster dose of BNT after their first two doses of AZ (AZ/AZ/BNT) demonstrated the highest level of protection against the omicron variant at 44.4%, followed closely by the COVID-19 patients. In analyzing the serial samples taken from hospitalized COVID-19 patients, we observed that their inhibition rates against the wild-type and delta variants improved over time, while the inhibition rate against the omicron variant decreased. Conclusion: In conclusion, our findings suggest that heterologous booster vaccination after primary vaccination produces higher nAb titers and provides a higher level of protection against the omicron variant compared to primary vaccination alone. This protective effect was similar to that observed in patients with severe COVID-19.
KW - Heterologous vaccination
KW - Homologous vaccination
KW - Omicron
UR - http://www.scopus.com/inward/record.url?scp=85167394626&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85167394626&partnerID=8YFLogxK
U2 - 10.1016/j.jiph.2023.07.017
DO - 10.1016/j.jiph.2023.07.017
M3 - Article
C2 - 37562081
AN - SCOPUS:85167394626
SN - 1876-0341
VL - 16
SP - 1537
EP - 1543
JO - Journal of Infection and Public Health
JF - Journal of Infection and Public Health
IS - 10
ER -