TY - JOUR
T1 - HER-2 gene amplification correlates with higher levels of angiogenesis and lower levels of hypoxia in primary breast tumors
AU - Blackwell, Kimberly L.
AU - Dewhirst, Mark W.
AU - Liotcheva, Vlayka
AU - Snyder, Stacey
AU - Broadwater, Gloria
AU - Bentley, Rex
AU - Lal, Anita
AU - Riggins, Gregory
AU - Anderson, Steve
AU - Vredenburgh, Jim
AU - Proia, Alan
AU - Harris, Lyndsay N.
PY - 2004/7/15
Y1 - 2004/7/15
N2 - Purpose: This study investigated the connection among HER-2 gene amplification, HER-2 protein expression, and markers of tumor angiogenesis and oxygenation in patients with operable, invasive breast tumors. Experimental Design: From 1988 to 1995, 425 patients with metastatic breast cancer were enrolled in a study of high-dose chemotherapy with autologous transplant. Primary tumor blocks were obtained and evaluated using immunohistochemistry (IHC) staining of vessels with von Willebrand factor antibody. Mean microvessel densities (MVD) were determined by counting von Willebrand factor stained cells in three separate "vascular hot spots" using image analysis. Tumor samples were also stained for HER-2 by IHC, HER-2 gene amplification by fluorescence in situ hybridization, carbonic anhydrase 9 by IHC, and vascular endothelial growth factor (VEGF) by IHC. Plasma from 36 patients with primary tumor samples had VEGF (R&D Systems, MN) and D-dimer (American Diagnostica, Greenwich, CT) levels determined. Results: There was a significant positive correlation between HER-2 gene amplification and both maximum and average MVD (Spearman coefficient = 0.51 and 0.50; P = 0.03 and 0.05, respectively). There was an inverse correlation with HER-2 gene amplification and expression of the tumor hypoxia marker CA-9 (χ2 P = 0.02). The level of HER-2 gene amplification correlated with plasma D-dimer levels (Spearman coefficient = 0.43; P = 0.021). Interestingly, tumors with HER-2 by IHC had decreased amounts of VEGF staining (χ2 = 5.81; P = 0.01). There was no correlation between HER-2 by IHC and MVD or D-dimer. Of all of the variables examined, only average (P = 0.0016) and maximum MVD (P = 0.0128) predicted disease-free survival (Cox univariate model). Conclusions: HER-2-amplified breast cancers have increased amounts of angiogenesis, decreased amounts of hypoxia, and increased markers of fibrin degradation. These findings have prognostic, predictive, and therapeutic implications in breast cancer treatment.
AB - Purpose: This study investigated the connection among HER-2 gene amplification, HER-2 protein expression, and markers of tumor angiogenesis and oxygenation in patients with operable, invasive breast tumors. Experimental Design: From 1988 to 1995, 425 patients with metastatic breast cancer were enrolled in a study of high-dose chemotherapy with autologous transplant. Primary tumor blocks were obtained and evaluated using immunohistochemistry (IHC) staining of vessels with von Willebrand factor antibody. Mean microvessel densities (MVD) were determined by counting von Willebrand factor stained cells in three separate "vascular hot spots" using image analysis. Tumor samples were also stained for HER-2 by IHC, HER-2 gene amplification by fluorescence in situ hybridization, carbonic anhydrase 9 by IHC, and vascular endothelial growth factor (VEGF) by IHC. Plasma from 36 patients with primary tumor samples had VEGF (R&D Systems, MN) and D-dimer (American Diagnostica, Greenwich, CT) levels determined. Results: There was a significant positive correlation between HER-2 gene amplification and both maximum and average MVD (Spearman coefficient = 0.51 and 0.50; P = 0.03 and 0.05, respectively). There was an inverse correlation with HER-2 gene amplification and expression of the tumor hypoxia marker CA-9 (χ2 P = 0.02). The level of HER-2 gene amplification correlated with plasma D-dimer levels (Spearman coefficient = 0.43; P = 0.021). Interestingly, tumors with HER-2 by IHC had decreased amounts of VEGF staining (χ2 = 5.81; P = 0.01). There was no correlation between HER-2 by IHC and MVD or D-dimer. Of all of the variables examined, only average (P = 0.0016) and maximum MVD (P = 0.0128) predicted disease-free survival (Cox univariate model). Conclusions: HER-2-amplified breast cancers have increased amounts of angiogenesis, decreased amounts of hypoxia, and increased markers of fibrin degradation. These findings have prognostic, predictive, and therapeutic implications in breast cancer treatment.
UR - http://www.scopus.com/inward/record.url?scp=3042672914&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3042672914&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-03-0695
DO - 10.1158/1078-0432.CCR-03-0695
M3 - Article
C2 - 15217943
AN - SCOPUS:3042672914
SN - 1078-0432
VL - 10
SP - 4083
EP - 4088
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 12 I
ER -