TY - JOUR
T1 - Hepatocyte adhesion to carbohydrate-derivatized surfaces II. Regulation of cytoskeletal organization and cell morphology
AU - Weisz, Ora A.
AU - Schnaar, Ronald L.
PY - 1991/10
Y1 - 1991/10
N2 - Rat hepatic lectins mediate adhesion of isolated rat hepatocytes to synthetic surfaces derivatized with galactosides. Initial weak adhesion is followed by rapid adhesion strengthening. After hepatocytes contact galactose-derivatized gels, the hepatic lectins move rapidly into an inaccessible patch at the adhesive surface (Weisz, O. A., and R. L. Schnaar. 1991. J. Cell Biol. 115:485-493). Hepatic lectin patching, which occurs both at 37°C and 4°C, is not responsible for adhesion strengthening, which does not occur at 4°C. Of various cytoskeletal and metabolic perturbants tested, only a combination of hyperosmotic medium, colchicine, and cytochalasin caused a marked (72%) reduction of adhesion strengthening (without reducing weak cell adhesion). Clathrin and actin were readily detected in the adhesive patch by immunofluorescence microscopy. Rat hepatocytes also adhered avidly to surfaces derivatized with asialofetuin, a high-affinity ligand for the rat hepatic lectins. However, hepatic lectin molecules did not migrate into a patch on the asialofetuin-derivatized surface, suggesting that hepatic lectin-asialofetuin binding may have resulted in the rapid formation of a ring of essentially irreversibly adherent receptors that prevented diffusion of additional lectin molecules into the contact site. The cells were unable to increase their adhesive contact area by flattening onto the derivatized surface. Treatment of cells with cytochalasin, however, did result in an increase in the size of the contact area. Cells adhering to surfaces derivatized with an adhesion-promoting peptide (containing an arg-gly-asp sequence) had larger contact areas than those adhering to galactoside-derivatized surfaces. A model is proposed in which carbohydrate-mediated adhesion causes specific reorganization of cytoskeletal components, leading to strengthened adhesion and a characteristic spherical cell morphology.
AB - Rat hepatic lectins mediate adhesion of isolated rat hepatocytes to synthetic surfaces derivatized with galactosides. Initial weak adhesion is followed by rapid adhesion strengthening. After hepatocytes contact galactose-derivatized gels, the hepatic lectins move rapidly into an inaccessible patch at the adhesive surface (Weisz, O. A., and R. L. Schnaar. 1991. J. Cell Biol. 115:485-493). Hepatic lectin patching, which occurs both at 37°C and 4°C, is not responsible for adhesion strengthening, which does not occur at 4°C. Of various cytoskeletal and metabolic perturbants tested, only a combination of hyperosmotic medium, colchicine, and cytochalasin caused a marked (72%) reduction of adhesion strengthening (without reducing weak cell adhesion). Clathrin and actin were readily detected in the adhesive patch by immunofluorescence microscopy. Rat hepatocytes also adhered avidly to surfaces derivatized with asialofetuin, a high-affinity ligand for the rat hepatic lectins. However, hepatic lectin molecules did not migrate into a patch on the asialofetuin-derivatized surface, suggesting that hepatic lectin-asialofetuin binding may have resulted in the rapid formation of a ring of essentially irreversibly adherent receptors that prevented diffusion of additional lectin molecules into the contact site. The cells were unable to increase their adhesive contact area by flattening onto the derivatized surface. Treatment of cells with cytochalasin, however, did result in an increase in the size of the contact area. Cells adhering to surfaces derivatized with an adhesion-promoting peptide (containing an arg-gly-asp sequence) had larger contact areas than those adhering to galactoside-derivatized surfaces. A model is proposed in which carbohydrate-mediated adhesion causes specific reorganization of cytoskeletal components, leading to strengthened adhesion and a characteristic spherical cell morphology.
UR - http://www.scopus.com/inward/record.url?scp=0025989627&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025989627&partnerID=8YFLogxK
U2 - 10.1083/jcb.115.2.495
DO - 10.1083/jcb.115.2.495
M3 - Article
C2 - 1717487
AN - SCOPUS:0025989627
SN - 0021-9525
VL - 115
SP - 495
EP - 504
JO - Journal of Cell Biology
JF - Journal of Cell Biology
IS - 2
ER -