TY - JOUR
T1 - Green toxicology
AU - Maertens, Alexandra
AU - Anastas, Nicholas
AU - Spencer, Pamela J.
AU - Stephens, Martin
AU - Goldberg, Alan
AU - Hartung, Thomas
PY - 2014
Y1 - 2014
N2 - Historically, early identification and characterization of adverse effects of industrial chemicals was difficult because conventional toxicological test methods did not meet R&D needs for rapid, relatively inexpensive methods amenable to small amounts of test material. The pharmaceutical industry now front-loads toxicity testing, using in silico, in vitro, and less demanding animal tests at earlier stages of product development to identify and anticipate undesirable toxicological effects and optimize product development. The Green Chemistry movement embraces similar ideas for development of less toxic products, safer processes, and less waste and exposure. Further, the concept of benign design suggests ways to consider possible toxicities before the actual synthesis and to apply some structure/activity rules (SAR) and in silico methods. This requires not only scientific development but also a change in corporate culture in which synthetic chemists work with toxicologists. An emerging discipline called Green Toxicology (Anastas, 2012) provides a framework for integrating the principles of toxicology into the enterprise of designing safer chemicals, thereby minimizing potential toxicity as early in production as possible. Green Toxicology's novel utility lies in driving innovation by moving safety considerations to the earliest stage in a chemical's lifecycle, i.e., to molecular design. In principle, this field is no different than other subdisciplines of toxicology that endeavor to focus on a specific area - for example, clinical, environmental or forensic toxicology. We use the same principles and tools to evaluate an existing substance or to design a new one. The unique emphasis is in using 21st century toxicology tools as a preventative strategy to "design out" undesired human health and environmental effects, thereby increasing the likelihood of launching a successful, sustainable product. Starting with the formation of a steering group and a series of workshops, the Green Toxicology concept is currently spreading internationally and is being refined via an iterative process.
AB - Historically, early identification and characterization of adverse effects of industrial chemicals was difficult because conventional toxicological test methods did not meet R&D needs for rapid, relatively inexpensive methods amenable to small amounts of test material. The pharmaceutical industry now front-loads toxicity testing, using in silico, in vitro, and less demanding animal tests at earlier stages of product development to identify and anticipate undesirable toxicological effects and optimize product development. The Green Chemistry movement embraces similar ideas for development of less toxic products, safer processes, and less waste and exposure. Further, the concept of benign design suggests ways to consider possible toxicities before the actual synthesis and to apply some structure/activity rules (SAR) and in silico methods. This requires not only scientific development but also a change in corporate culture in which synthetic chemists work with toxicologists. An emerging discipline called Green Toxicology (Anastas, 2012) provides a framework for integrating the principles of toxicology into the enterprise of designing safer chemicals, thereby minimizing potential toxicity as early in production as possible. Green Toxicology's novel utility lies in driving innovation by moving safety considerations to the earliest stage in a chemical's lifecycle, i.e., to molecular design. In principle, this field is no different than other subdisciplines of toxicology that endeavor to focus on a specific area - for example, clinical, environmental or forensic toxicology. We use the same principles and tools to evaluate an existing substance or to design a new one. The unique emphasis is in using 21st century toxicology tools as a preventative strategy to "design out" undesired human health and environmental effects, thereby increasing the likelihood of launching a successful, sustainable product. Starting with the formation of a steering group and a series of workshops, the Green Toxicology concept is currently spreading internationally and is being refined via an iterative process.
KW - Benign design
KW - Design out
KW - Green toxicology
KW - Product development
UR - http://www.scopus.com/inward/record.url?scp=84904905430&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84904905430&partnerID=8YFLogxK
U2 - 10.14573/altex.1406181
DO - 10.14573/altex.1406181
M3 - Article
C2 - 25061898
AN - SCOPUS:84904905430
SN - 1868-596X
VL - 31
SP - 243
EP - 249
JO - ALTEX
JF - ALTEX
IS - 3
ER -