TY - GEN
T1 - GPU implementation of coherence-based photoacoustic beamforming for autonomous visual servoing
AU - Gonzalez, Eduardo
AU - Gubbi, Mardava Rajugopal
AU - Lediju Bell, Muyinatu A.
N1 - Funding Information:
ACKNOWLEDGMENTS The authors acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research and Dongwoon Hyun for sharing SLSC GPU example code specific to the Verasonics ultrasound imaging system.
Publisher Copyright:
© 2019 IEEE.
PY - 2019/10
Y1 - 2019/10
N2 - Visual servoing is a promising technique for surgical tool tip tracking and automated visualization of photoacoustic targets during interventional procedures. However, visual servoing in photoacoustic imaging is challenged by the trade-off between laser safety limits and the energy needed for reliable segmentation. Short-lag spatial coherence (SLSC) imaging has the potential to overcome this challenge by improving the signal quality of images acquired with low laser energies. This study introduces the first known GPU-based real-time implementation of SLSC imaging for photoacoustic imaging and applies this real-time algorithm to enhance segmentations for visual servoing. Results with ex vivo bovine tissue demonstrate that SLSC imaging recovers signals obtained with low energy (i.e., ≤ 268 μJ) with a signal-to-noise ratio (SNR) of 11.2 ± 2.4, compared to a SNR of 3.5 ± 0.8 with conventional delay-and-sum (DAS) imaging. When energies were lower than the safety limit for skin (i.e., 400 μJ for 900 nm wavelength), real-time SLSC imaging produced lower errors during fiber tracking tasks (i.e., accuracies of 0.67 ± 0.42 mm and 4.91 ± 6.01 mm with SLSC and DAS, respectively). Similarly, for probe centering tests, the tracking error with SLSC and DAS imaging was 0.85 mm ±0.44 and 1.05 ± 0.30 mm, respectively. These results are promising for complicated visual servoing tasks in high-noise environments.
AB - Visual servoing is a promising technique for surgical tool tip tracking and automated visualization of photoacoustic targets during interventional procedures. However, visual servoing in photoacoustic imaging is challenged by the trade-off between laser safety limits and the energy needed for reliable segmentation. Short-lag spatial coherence (SLSC) imaging has the potential to overcome this challenge by improving the signal quality of images acquired with low laser energies. This study introduces the first known GPU-based real-time implementation of SLSC imaging for photoacoustic imaging and applies this real-time algorithm to enhance segmentations for visual servoing. Results with ex vivo bovine tissue demonstrate that SLSC imaging recovers signals obtained with low energy (i.e., ≤ 268 μJ) with a signal-to-noise ratio (SNR) of 11.2 ± 2.4, compared to a SNR of 3.5 ± 0.8 with conventional delay-and-sum (DAS) imaging. When energies were lower than the safety limit for skin (i.e., 400 μJ for 900 nm wavelength), real-time SLSC imaging produced lower errors during fiber tracking tasks (i.e., accuracies of 0.67 ± 0.42 mm and 4.91 ± 6.01 mm with SLSC and DAS, respectively). Similarly, for probe centering tests, the tracking error with SLSC and DAS imaging was 0.85 mm ±0.44 and 1.05 ± 0.30 mm, respectively. These results are promising for complicated visual servoing tasks in high-noise environments.
UR - http://www.scopus.com/inward/record.url?scp=85077606083&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077606083&partnerID=8YFLogxK
U2 - 10.1109/ULTSYM.2019.8925960
DO - 10.1109/ULTSYM.2019.8925960
M3 - Conference contribution
AN - SCOPUS:85077606083
T3 - IEEE International Ultrasonics Symposium, IUS
SP - 24
EP - 27
BT - 2019 IEEE International Ultrasonics Symposium, IUS 2019
PB - IEEE Computer Society
T2 - 2019 IEEE International Ultrasonics Symposium, IUS 2019
Y2 - 6 October 2019 through 9 October 2019
ER -