Glucose catabolism in brain: Intracellular localization of hexokinase

David M. Parry, Peter L. Pedersen

Research output: Contribution to journalArticlepeer-review

31 Scopus citations


A major energy source in brain is glucose, which is committed to metabolism by hexokinase (Type I isozyme), an enzyme usually considered to be bound to the outer mitochondrial membrane. In this study, the subcellular location of hexokinase in brain has been rigorously investigated. Mitochondrial fractions containing hexokinase (>500 milliunits/mg protein) were prepared by two different procedures, and then subjected to density gradient centrifugation before and after loading with barium phosphate, a technique designed to increase the density of the mitochondria. The gradient distribution patterns of both unloaded and loaded preparations show that brain hexokinase does not distribute exclusively with mitochondrial marker enzymes. This is particularly evident in the loaded preparations where there is a clear distinction between the peak activities of hexokinase and mitochondrial markers. The same observation was made when the mitochondrial fraction of either untreated or barium phosphate-loaded mitochondria was subjected to titration with digitonin. In fact, at concentrations of digitonin, which almost completely solubilize marker enzymes for both the inner and outer mitochondrial membranes, a significant fraction of the total hexokinase remains particulate bound. Electron microscopy confirmed that particulate material is still present under these conditions. Significantly, hexokinase is released from particulate material only at high concentrations of digitonin which solubilize the associated microsomal marker NADPH-cytochrome c reductase. Glucose 6-phosphate, which is known to release hexokinase from the brain "mitochondrial fraction" also releases hexokinase from this unidentified particulate component. These results on brain, a normal glucose utilizing tissue, differ from those obtained previously on highly glycolytic tumor cells where identical subfractionation procedures revealed a strictly outer mitochondrial membrane location for particulate hexokinase (Parry, D. M., and Pedersen, P. L. (1983) J. Biol. Chem. 258, 10904-10912). It is concluded that in brain, hexokinase has a greater propensity to localize at nonmitochondrial receptor sites than to those known to be associated with the outer mitochondrial membrane.

Original languageEnglish (US)
Pages (from-to)1059-1066
Number of pages8
JournalJournal of Biological Chemistry
Issue number2
StatePublished - Jan 15 1990
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Glucose catabolism in brain: Intracellular localization of hexokinase'. Together they form a unique fingerprint.

Cite this