TY - JOUR
T1 - Glucagon stimulates expression of the inducible cAMP early repressor and suppresses insulin gene expression in pancreatic β-cells
AU - Hussain, M. A.
AU - Daniel, P. B.
AU - Habener, J. F.
PY - 2000
Y1 - 2000
N2 - The hormone glucagon is secreted by the α-cells of the endocrine pancreas (islets of Langerhans) during fasting and is essential for the maintenance of blood glucose levels by stimulation of hepatic glucose output. Excessive production and secretion of glucagon by the α-cells of the islets is a common accompaniment to diabetes. The resulting hyperglucagonemia stimulates hepatic glucose production, thereby contributing to hyperglycemia of diabetes. The reduced insulin secretion in diabetes and resultant failure to suppress glucagon secretion by intra-islet paracrine mechanisms is believed to cause the hypersecretion of glucagon. Here, we report the discovery of a new mechanism by which glucagon suppresses insulin secretion. We show that glucagon, but not glucagon-like peptide 1 (GLP-1)min or pituitary adenylyl cyclase-activating peptide (PACAP) specifically induces the expression of the transcriptional repressor inducible cAMP early repressor (ICER) in pancreatic β-cells, resulting in a repression of the transcriptional expression of the insulin gene. Remarkably, glucagon, GLP-1, and PACAP all stimulate the formation of cAMP to a comparable extent in rat pancreatic islets, but only glucagon activates the expression of ICER and represses insulin gene transcription in β-cells. These findings lead us to propose that hyperglucagonemia may additionally aggravate the diabetic phenotype via a suppression of insulin gene expression mediated by the transcriptional repressor ICER.
AB - The hormone glucagon is secreted by the α-cells of the endocrine pancreas (islets of Langerhans) during fasting and is essential for the maintenance of blood glucose levels by stimulation of hepatic glucose output. Excessive production and secretion of glucagon by the α-cells of the islets is a common accompaniment to diabetes. The resulting hyperglucagonemia stimulates hepatic glucose production, thereby contributing to hyperglycemia of diabetes. The reduced insulin secretion in diabetes and resultant failure to suppress glucagon secretion by intra-islet paracrine mechanisms is believed to cause the hypersecretion of glucagon. Here, we report the discovery of a new mechanism by which glucagon suppresses insulin secretion. We show that glucagon, but not glucagon-like peptide 1 (GLP-1)min or pituitary adenylyl cyclase-activating peptide (PACAP) specifically induces the expression of the transcriptional repressor inducible cAMP early repressor (ICER) in pancreatic β-cells, resulting in a repression of the transcriptional expression of the insulin gene. Remarkably, glucagon, GLP-1, and PACAP all stimulate the formation of cAMP to a comparable extent in rat pancreatic islets, but only glucagon activates the expression of ICER and represses insulin gene transcription in β-cells. These findings lead us to propose that hyperglucagonemia may additionally aggravate the diabetic phenotype via a suppression of insulin gene expression mediated by the transcriptional repressor ICER.
UR - http://www.scopus.com/inward/record.url?scp=0033815591&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033815591&partnerID=8YFLogxK
U2 - 10.2337/diabetes.49.10.1681
DO - 10.2337/diabetes.49.10.1681
M3 - Article
C2 - 11016452
AN - SCOPUS:0033815591
SN - 0012-1797
VL - 49
SP - 1681
EP - 1690
JO - Diabetes
JF - Diabetes
IS - 10
ER -