Getting the most out of your crystals: Data collection at the new high-flux, Microfocus MX beamlines at NSLS-II

Michelle S. Miller, Sweta Maheshwari, Wuxian Shi, Yuan Gao, Nam Chu, Alexei S. Soares, Philip A. Cole, L. Mario Amzel, Martin R. Fuchs, Jean Jakoncic, Sandra B. Gabelli

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Advances in synchrotron technology are changing the landscape of macromolecular crystallography. The two recently opened beamlines at NSLS-II—AMX and FMX—deliver high-flux microfocus beams that open new possibilities for crystallographic data collection. They are equipped with state-of-the-art experimental stations and automation to allow data collection on previously intractable crystals. Optimized data collection strategies allow users to tailor crystal positioning to optimally distribute the X-ray dose over its volume. Vector data collection allows the user to define a linear trajectory along a well diffracting volume of the crystal and perform rotational data collection while moving along the vector. This is particularly well suited to long, thin crystals. We describe vector data collection of three proteins—Akt1, PI3Kα, and CDP-Chase—to demonstrate its application and utility. For smaller crystals, we describe two methods for multicrystal data collection in a single loop, either manually selecting multiple centers (using H108A-PHM as an example), or “raster-collect”, a more automated approach for a larger number of crystals (using CDP-Chase as an example).

Original languageEnglish (US)
Article number496
Issue number3
StatePublished - Jan 30 2019


  • CDP-Chase
  • Microdiffraction
  • Microfocus
  • Multicrystal
  • Nonhomogeneous crystals
  • PHM
  • PI3Kα, Akt1
  • Vector data collection

ASJC Scopus subject areas

  • Analytical Chemistry
  • Chemistry (miscellaneous)
  • Molecular Medicine
  • Pharmaceutical Science
  • Drug Discovery
  • Physical and Theoretical Chemistry
  • Organic Chemistry


Dive into the research topics of 'Getting the most out of your crystals: Data collection at the new high-flux, Microfocus MX beamlines at NSLS-II'. Together they form a unique fingerprint.

Cite this