Genome-wide repeat landscapes in cancer and cell-free DNA

Akshaya V. Annapragada, Noushin Niknafs, James R. White, Daniel C. Bruhm, Christopher Cherry, Jamie E. Medina, Vilmos Adleff, Carolyn Hruban, Dimitrios Mathios, Zachariah H. Foda, Jillian Phallen, Robert B. Scharpf, Victor E. Velculescu

Research output: Contribution to journalArticlepeer-review

Abstract

Genetic changes in repetitive sequences are a hallmark of cancer and other diseases, but characterizing these has been challenging using standard sequencing approaches. We developed a de novo kmer finding approach, called ARTEMIS (Analysis of RepeaT EleMents in dISease), to identify repeat elements from whole-genome sequencing. Using this method, we analyzed 1.2 billion kmers in 2837 tissue and plasma samples from 1975 patients, including those with lung, breast, colorectal, ovarian, liver, gastric, head and neck, bladder, cervical, thyroid, or prostate cancer. We identified tumor-specific changes in these patients in 1280 repeat element types from the LINE, SINE, LTR, transposable element, and human satellite families. These included changes to known repeats and 820 elements that were not previously known to be altered in human cancer. Repeat elements were enriched in regions of driver genes, and their representation was altered by structural changes and epigenetic states. Machine learning analyses of genome-wide repeat landscapes and fragmentation profiles in cfDNA detected patients with early-stage lung or liver cancer in cross-validated and externally validated cohorts. In addition, these repeat landscapes could be used to noninvasively identify the tissue of origin of tumors. These analyses reveal widespread changes in repeat landscapes of human cancers and provide an approach for their detection and characterization that could benefit early detection and disease monitoring of patients with cancer.

Original languageEnglish (US)
Article numbereadj9283
JournalScience translational medicine
Volume16
Issue number738
DOIs
StatePublished - Mar 13 2024

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Genome-wide repeat landscapes in cancer and cell-free DNA'. Together they form a unique fingerprint.

Cite this