Genetically-predicted prefrontal DRD4 gene expression modulates differentiated brain responses to food cues in adolescent girls and boys

Andre K. Portella, Afroditi Papantoni, Antoneta T. Joseph, Liuyi Chen, Richard S. Lee, Patricia P. Silveira, Laurette Dube, Susan Carnell

Research output: Contribution to journalArticlepeer-review

Abstract

The dopamine receptor 4 (DRD4) in the prefrontal cortex (PFC) acts to modulate behaviours including cognitive control and motivation, and has been implicated in behavioral inhibition and responsivity to food cues. Adolescence is a sensitive period for the development of habitual eating behaviors and obesity risk, with potential mediation by development of the PFC. We previously found that genetic variations influencing DRD4 function or expression were associated with measures of laboratory and real-world eating behavior in girls and boys. Here we investigated brain responses to high energy–density (ED) and low-ED food cues using an fMRI task conducted in the satiated state. We used the gene-based association method PrediXcan to estimate tissue-specific DRD4 gene expression in prefrontal brain areas from individual genotypes. Among girls, those with lower vs. higher predicted prefrontal DRD4 expression showed lesser activation to high-ED and low-ED vs. non-food cues in a distributed network of regions implicated in attention and sensorimotor processing including middle frontal gyrus, and lesser activation to low-ED vs non-food cues in key regions implicated in valuation including orbitofrontal cortex and ventromedial PFC. In contrast, males with lower vs. higher predicted prefrontal DRD4 expression showed minimal differences in food cue response, namely relatively greater activation to high-ED and low-ED vs. non-food cues in the inferior parietal lobule. Our data suggest sex-specific effects of prefrontal DRD4 on brain food responsiveness in adolescence, with modulation of distributed regions relevant to cognitive control and motivation observable in female adolescents.

Original languageEnglish (US)
Article number24094
JournalScientific reports
Volume11
Issue number1
DOIs
StatePublished - Dec 2021

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Genetically-predicted prefrontal DRD4 gene expression modulates differentiated brain responses to food cues in adolescent girls and boys'. Together they form a unique fingerprint.

Cite this