TY - JOUR
T1 - Genes indicative of zoonotic and swine pathogens are persistent in stream water and sediment following a swine manure spill
AU - Haack, Sheridan K.
AU - Duris, Joseph W.
AU - Kolpin, Dana W.
AU - Fogarty, Lisa R.
AU - Johnson, Heather E.
AU - Gibson, Kristen E.
AU - Focazio, Michael
AU - Schwab, Kellogg J.
AU - Hubbard, Laura E.
AU - Foreman, William T.
N1 - Publisher Copyright:
© 2015, American Society for Microbiology. All Rights Reserved.
PY - 2015
Y1 - 2015
N2 - Manure spills into streams are relatively frequent, but no studies have characterized stream contamination with zoonotic and veterinary pathogens, or fecal chemicals, following a spill. We tested stream water and sediment over 25 days and downstream for 7.6 km for the following: fecal indicator bacteria (FIB), the fecal indicator chemicals cholesterol and coprostanol, 20 genes for zoonotic and swine-specific bacterial pathogens by presence/absence PCR for viable cells, one swine-specific Escherichia coli toxin gene (STII gene) by quantitative PCR (qPCR), and nine human and animal viruses by qPCR or reverse transcription-qPCR. Twelve days postspill, and 4.2 km downstream, water concentrations of FIB, cholesterol, and coprostanol were 1 to 2 orders of magnitude greater than those detected before, or above, the spill, and genes indicating viable zoonotic or swine-infectious Escherichia coli were detected in water or sediment. STII gene levels increased from undetectable before or above the spill to 105 copies/ 100 ml of water 12 days postspill. Thirteen of 14 water (8/9 sediment) samples had viable STII-carrying cells postspill. Eighteen days postspill, porcine adenovirus and teschovirus were detected 5.6 km downstream. FIB concentrations (per gram [wet weight]) in sediment were greater than in water, and sediment was a continuous reservoir of genes and chemicals postspill. Constituent concentrations were much lower, and detections less frequent, in a runoff event (200 days postspill) following manure application, although the swine-associated STII and stx2e genes were detected. Manure spills are an underappreciated pathway for livestock-derived contaminants to enter streams, with persistent environmental outcomes and the potential for human and veterinary health consequences.
AB - Manure spills into streams are relatively frequent, but no studies have characterized stream contamination with zoonotic and veterinary pathogens, or fecal chemicals, following a spill. We tested stream water and sediment over 25 days and downstream for 7.6 km for the following: fecal indicator bacteria (FIB), the fecal indicator chemicals cholesterol and coprostanol, 20 genes for zoonotic and swine-specific bacterial pathogens by presence/absence PCR for viable cells, one swine-specific Escherichia coli toxin gene (STII gene) by quantitative PCR (qPCR), and nine human and animal viruses by qPCR or reverse transcription-qPCR. Twelve days postspill, and 4.2 km downstream, water concentrations of FIB, cholesterol, and coprostanol were 1 to 2 orders of magnitude greater than those detected before, or above, the spill, and genes indicating viable zoonotic or swine-infectious Escherichia coli were detected in water or sediment. STII gene levels increased from undetectable before or above the spill to 105 copies/ 100 ml of water 12 days postspill. Thirteen of 14 water (8/9 sediment) samples had viable STII-carrying cells postspill. Eighteen days postspill, porcine adenovirus and teschovirus were detected 5.6 km downstream. FIB concentrations (per gram [wet weight]) in sediment were greater than in water, and sediment was a continuous reservoir of genes and chemicals postspill. Constituent concentrations were much lower, and detections less frequent, in a runoff event (200 days postspill) following manure application, although the swine-associated STII and stx2e genes were detected. Manure spills are an underappreciated pathway for livestock-derived contaminants to enter streams, with persistent environmental outcomes and the potential for human and veterinary health consequences.
UR - http://www.scopus.com/inward/record.url?scp=84930037212&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84930037212&partnerID=8YFLogxK
U2 - 10.1128/AEM.04195-14
DO - 10.1128/AEM.04195-14
M3 - Article
C2 - 25769829
AN - SCOPUS:84930037212
SN - 0099-2240
VL - 81
SP - 3430
EP - 3441
JO - Applied and environmental microbiology
JF - Applied and environmental microbiology
IS - 10
ER -