TY - JOUR
T1 - Gene expression associated with in vivo induction of early phase-long-term potentiation (LTP) in the hippocampal mossy fiber-Cornus Ammonis (CA)3 pathway.
AU - Thompson, K. J.
AU - Orfila, J. E.
AU - Achanta, P.
AU - Martinez, J. L.
PY - 2003/12
Y1 - 2003/12
N2 - Affymetrix microarray technology was used to characterize whole-hippocampus gene expression associated with in vivo N-methyl-D-aspartate (NMDA)-R-independent long-term potentiation (LTP) in the mossy fiber (MF)-Cornus Ammonis (CA)3 pathway of adult male F344 rats. Acute MF responses were evoked by stimulation of the MF bundle and recorded in stratum lucidum of CA3. Following recording of baseline responses at 0.05 Hz, animals received either CPP (NMDA-R antagonist, 10 mg/kg) or naloxone (opioid-R antagonist, 10 mg/kg). LTP was induced by two 100 Hz 1-sec trains at the intensity sufficient to evoke 50% of the maximal response. Responses were collected for an additional hour. In controls, MF responses were collected at 0.05 Hz for 1 hr, but 100 Hz trains were not delivered. Hippocampi were harvested prior to total RNA isolation. Fragmented cRNA was hybridized to a rat U34 neurobiology array. F344 rats exhibited characteristic LTP in the presence of CPP and LTP blockade in the presence of naloxone. As a result, genes associated with both NMDA-independent LTP and naloxone-induced blockade were identified. These include genes involved in transmitter transport, intracellular messengers, growth factors and ion channels. Up-regulated include NMDA-R2D, neuropeptide Y (NPY), proenkephalin, BDNF and NGFR. Down-regulated genes include IGF-1 and GABA-B.
AB - Affymetrix microarray technology was used to characterize whole-hippocampus gene expression associated with in vivo N-methyl-D-aspartate (NMDA)-R-independent long-term potentiation (LTP) in the mossy fiber (MF)-Cornus Ammonis (CA)3 pathway of adult male F344 rats. Acute MF responses were evoked by stimulation of the MF bundle and recorded in stratum lucidum of CA3. Following recording of baseline responses at 0.05 Hz, animals received either CPP (NMDA-R antagonist, 10 mg/kg) or naloxone (opioid-R antagonist, 10 mg/kg). LTP was induced by two 100 Hz 1-sec trains at the intensity sufficient to evoke 50% of the maximal response. Responses were collected for an additional hour. In controls, MF responses were collected at 0.05 Hz for 1 hr, but 100 Hz trains were not delivered. Hippocampi were harvested prior to total RNA isolation. Fragmented cRNA was hybridized to a rat U34 neurobiology array. F344 rats exhibited characteristic LTP in the presence of CPP and LTP blockade in the presence of naloxone. As a result, genes associated with both NMDA-independent LTP and naloxone-induced blockade were identified. These include genes involved in transmitter transport, intracellular messengers, growth factors and ion channels. Up-regulated include NMDA-R2D, neuropeptide Y (NPY), proenkephalin, BDNF and NGFR. Down-regulated genes include IGF-1 and GABA-B.
UR - http://www.scopus.com/inward/record.url?scp=4944247394&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4944247394&partnerID=8YFLogxK
M3 - Article
C2 - 14983999
AN - SCOPUS:4944247394
SN - 0145-5680
VL - 49
SP - 1281
EP - 1287
JO - Cellular and Molecular Biology
JF - Cellular and Molecular Biology
IS - 8
ER -