Abstract
Background We have previously shown that there is synergism between Hepatocyte Growth Factor (HGF) and Omega-3 (OM-3) enriched feeds using an immunologic model of inflammatory bowel disease (IBD). This combination decreased inflammation and cytokine levels and increased microvascular density and mucosal mass. This study evaluates the gene alterations that occurred using this same model. Methods Twenty adult female transgenic HLA-B27 rats were divided into four groups: Group 1: (Regular feeds, IV saline); Group 2: (OM-3 feeds, IV saline); Group 3: (Regular feeds, IV HGF 150 μg/kg/day); Group 4: (OM-3 feeds, IV HGF 150 μg/kg/day). Rats were sacrificed 14 days after pump placement. Bowel was harvested and RNA extracted. Microarray gene chips were used. Statistical analysis was done by analysis of variance using Partek Genomics Suite. Results were significant if fold change was more than 2 or less than - 2, with P < 0.05. Results In the ileum, HGF up- or down-regulated 34 genes, while OM-3 affected 60 genes. Together 68 genes were affected. Families with a synergistic effect included Solute Carrier Proteins, ATP Binding Cassette Proteins, and Matrix Metalloproteinases. In the colon, 23 genes were affected by HGF, while 66 genes were affected with OM-3. Combined exposure affected 32 genes, including a synergistic effect on solute carrier proteins, aquaporins, and immunologic factors. Conclusions There is a synergistic gene alteration effect of exposure of two (HGF and Omega-3 enriched feeds) agents on bowel mucosa. Of most interest was the synergistic effect on the solute carrier protein family, a previously identified gene family up-regulated in response to intestinal failure.
Original language | English (US) |
---|---|
Pages (from-to) | 345-352 |
Number of pages | 8 |
Journal | Journal of pediatric surgery |
Volume | 48 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2013 |
Externally published | Yes |
Keywords
- HLA-B27
- Hepatocyte growth factor
- Inflammatory bowel disease
- Intestinal failure
- Omega-3
ASJC Scopus subject areas
- Pediatrics, Perinatology, and Child Health
- Surgery