GCPII Inhibition Promotes Remyelination after Peripheral Nerve Injury in Aged Mice

Yu Su, Meixiang Huang, Ajit G. Thomas, John Maragakis, Kaitlyn D.J. Huizar, Yuxin Zheng, Ying Wu, Mohamed H. Farah, Barbara S. Slusher

Research output: Contribution to journalArticlepeer-review

Abstract

Peripheral nerve injuries (PNIs) represent a significant clinical challenge, particularly in elderly populations where axonal remyelination and regeneration are impaired. Developing therapies to enhance these processes is crucial for improving PNI repair outcomes. Glutamate carboxypeptidase II (GCPII) is a neuropeptidase that plays a pivotal role in modulating glutamate signaling through its enzymatic cleavage of the abundant neuropeptide N-acetyl aspartyl glutamate (NAAG) to liberate glutamate. Within the PNS, GCPII is expressed in Schwann cells and activated macrophages, and its expression is amplified with aging. In this study, we explored the therapeutic potential of inhibiting GCPII activity following PNI. We report significant GCPII protein and activity upregulation following PNI, which was normalized by the potent and selective GCPII inhibitor 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). In vitro, 2-PMPA robustly enhanced myelination in dorsal root ganglion (DRG) explants. In vivo, using a sciatic nerve crush injury model in aged mice, 2-PMPA accelerated remyelination, as evidenced by increased myelin sheath thickness and higher numbers of remyelinated axons. These findings suggest that GCPII inhibition may be a promising therapeutic strategy to enhance remyelination and potentially improve functional recovery after PNI, which is especially relevant in elderly PNI patients where this process is compromised.

Original languageEnglish (US)
Article number6893
JournalInternational journal of molecular sciences
Volume25
Issue number13
DOIs
StatePublished - Jul 2024

Keywords

  • GCPII
  • PNI
  • Schwann cells
  • aging
  • macrophages
  • remyelination

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'GCPII Inhibition Promotes Remyelination after Peripheral Nerve Injury in Aged Mice'. Together they form a unique fingerprint.

Cite this