Gaussian Conditional Random Field Network for Semantic Segmentation

Raviteja Vemulapalli, Oncel Tuzel, Ming Yu Liu, Rama Chellappa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In contrast to the existing approaches that use discrete Conditional Random Field (CRF) models, we propose to use a Gaussian CRF model for the task of semantic segmentation. We propose a novel deep network, which we refer to as Gaussian Mean Field (GMF) network, whose layers perform mean field inference over a Gaussian CRF. The proposed GMF network has the desired property that each of its layers produces an output that is closer to the maximum a posteriori solution of the Gaussian CRF compared to its input. By combining the proposed GMF network with deep Convolutional Neural Networks (CNNs), we propose a new end-to-end trainable Gaussian conditional random field network. The proposed Gaussian CRF network is composed of three sub-networks: (i) a CNN-based unary network for generating unary potentials, (ii) a CNN-based pairwise network for generating pairwise potentials, and (iii) a GMF network for performing Gaussian CRF inference. When trained end-to-end in a discriminative fashion, and evaluated on the challenging PASCALVOC 2012 segmentation dataset, the proposed Gaussian CRF network outperforms various recent semantic segmentation approaches that combine CNNs with discrete CRF models.

Original languageEnglish (US)
Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
PublisherIEEE Computer Society
Pages3224-3233
Number of pages10
ISBN (Electronic)9781467388504
DOIs
StatePublished - Dec 9 2016
Externally publishedYes
Event29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States
Duration: Jun 26 2016Jul 1 2016

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2016-December
ISSN (Print)1063-6919

Conference

Conference29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
Country/TerritoryUnited States
CityLas Vegas
Period6/26/167/1/16

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Gaussian Conditional Random Field Network for Semantic Segmentation'. Together they form a unique fingerprint.

Cite this