TY - JOUR
T1 - Gastric branch vagotomy blocks nutrient and cholecystokinin-induced suppression of gastric emptying
AU - Schwartz, G. J.
AU - Berkow, G.
AU - McHugh, P. R.
AU - Moran, T. H.
PY - 1993
Y1 - 1993
N2 - A role for the vagus nerve in the emptying of intragastric nutrients and the gastric inhibitory actions of the brain-gut peptide cholecystokinin (CCK) has been proposed. To directly assess the role of the gastric vagal branches in these actions, we compared the emptying of 5-ml nutrient and nonnutrient gastric loads in male rats in which both branches of the gastric vagus nerves were cut (GVX, n = 7) with emptying in surgical control (n = 8) rats. Gastric emptying of saline was also examined in both groups after intraperitoneal administration of 8 μg/kg CCK. In control rats, high osmolarity, low pH, and caloric density all significantly decreased gastric emptying compared with the emptying of physiological saline. In addition, fat (oleic acid) and protein (peptone) loads emptied significantly more slowly than isocaloric carbohydrate (glucose) loads. Gastric branch vagotomy completely blocked the suppression of emptying produced by fat, protein, carbohydrate, and acid loads. In addition, GVX attenuated the ability of hyperosmotic nutrient and nonnutrient loads to inhibit emptying to the same degree, irrespective of their caloric content. Finally, in intact rats, CCK significantly inhibited the emptying of physiological saline, and gastric vagotomy abolished this suppression. Taken together, these results are consistent with the proposals that 1) the controlled emptying of caloric, hyperosmotic, and acidic solutions is dependent on gastric vagal branches, and 2) exogenous CCK relies on an intact vagal pathway in the control of gastric emptying.
AB - A role for the vagus nerve in the emptying of intragastric nutrients and the gastric inhibitory actions of the brain-gut peptide cholecystokinin (CCK) has been proposed. To directly assess the role of the gastric vagal branches in these actions, we compared the emptying of 5-ml nutrient and nonnutrient gastric loads in male rats in which both branches of the gastric vagus nerves were cut (GVX, n = 7) with emptying in surgical control (n = 8) rats. Gastric emptying of saline was also examined in both groups after intraperitoneal administration of 8 μg/kg CCK. In control rats, high osmolarity, low pH, and caloric density all significantly decreased gastric emptying compared with the emptying of physiological saline. In addition, fat (oleic acid) and protein (peptone) loads emptied significantly more slowly than isocaloric carbohydrate (glucose) loads. Gastric branch vagotomy completely blocked the suppression of emptying produced by fat, protein, carbohydrate, and acid loads. In addition, GVX attenuated the ability of hyperosmotic nutrient and nonnutrient loads to inhibit emptying to the same degree, irrespective of their caloric content. Finally, in intact rats, CCK significantly inhibited the emptying of physiological saline, and gastric vagotomy abolished this suppression. Taken together, these results are consistent with the proposals that 1) the controlled emptying of caloric, hyperosmotic, and acidic solutions is dependent on gastric vagal branches, and 2) exogenous CCK relies on an intact vagal pathway in the control of gastric emptying.
KW - duodenal chemoreception
KW - rats
KW - stomach
KW - vagus
UR - http://www.scopus.com/inward/record.url?scp=0027480198&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027480198&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.1993.264.3.r630
DO - 10.1152/ajpregu.1993.264.3.r630
M3 - Article
C2 - 8457019
AN - SCOPUS:0027480198
SN - 0002-9513
VL - 264
SP - R630-R637
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 3 33-3
ER -