Abstract
Cancer cell adhesion to vascular endothelium is a critical process in hematogenous metastasis. We hypothesized that breast cancer cells express ligands that bind under blood flow conditions to E-selectin expressed by endothelial cells. At a hemodynamic wall shear rate, BT-20 and MDA-MB-468 breast cancer cells adhered to cytokine-activated human umbilical cord vein endothelial cells (HUVECs) but not to anti-E-selectin monoclonal antibody treated HUVECs, demonstrating that adhesion was specifically mediated by E-selectin. Characterization of glycans expressed on breast cancer cells by a panel of antibodies revealed that BT-20 cells expressed sialyl Lewis X (sLex) and sialyl Lewis A (sLea) but MDA-MB-468 cells did not, suggesting that the former possess classical glycans involved in E-selectin mediated adhesion while the latter have novel binding epitopes. Protease treatment of the breast cancer cells failed to significantly alter the carbohydrate expression profiles, binding to soluble E-selectin-Ig chimera, or the ability of the cells to tether and roll on E-selectin expressed by HUVECs, indicating that glycosphingolipids are functional E-selectin ligands on these cells. Furthermore, extracted breast cancer cell gangliosides supported binding of E-selectin-Ig chimera and adhesion of E-selectin transfected cells under physiological flow conditions. In summary, our results demonstrate that breast cancer cells express sialylated glycosphingolipids (gangliosides) as E-selectin ligands that may be targeted for prevention of metastasis.
Original language | English (US) |
---|---|
Pages (from-to) | 423-429 |
Number of pages | 7 |
Journal | Biochemical and Biophysical Research Communications |
Volume | 406 |
Issue number | 3 |
DOIs | |
State | Published - Mar 18 2011 |
Keywords
- Cell adhesion
- Metastasis
- Shear rate
- Sialyl Lewis
- Sialyl Lewis
ASJC Scopus subject areas
- Biophysics
- Biochemistry
- Molecular Biology
- Cell Biology