Abstract
Melanoma is the deadliest form of skin cancer in which patients with metastatic disease have a 5-year survival rate of less than 10%. Recently, the overexpression of a b-galactoside binding protein, galectin-3 (LGALS3), has been correlated with metastatic melanoma in patients. We have previously shown that silencing galectin-3 in metastatic melanoma cells reduces tumor growth and metastasis. Gene expression profiling identified the protumorigenic gene autotaxin ( ENPP2) to be downregulated after silencing galectin-3. Here we report that galectin-3 regulates autotaxin expression at the transcriptional level by modulating the expression of the transcription factor NFAT1 (NFATC2). Silencing galectin-3 reduced NFAT1 protein expression, which resulted in decreased autotaxin expression and activity. Reexpression of autotaxin in galectin-3 silenced melanoma cells rescues angiogenesis, tumor growth, and metastasis in vivo. Silencing NFAT1 expression in metastatic melanoma cells inhibited tumor growth and metastatic capabilities in vivo. Our data elucidate a previously unidentified mechanism by which galectin-3 regulates autotaxin and assign a novel role for NFAT1 during melanoma progression.
Original language | English (US) |
---|---|
Pages (from-to) | 5757-5766 |
Number of pages | 10 |
Journal | Cancer Research |
Volume | 72 |
Issue number | 22 |
DOIs | |
State | Published - Nov 15 2012 |
Externally published | Yes |
ASJC Scopus subject areas
- Oncology
- Cancer Research