Abstract
Nowadays, it is highly desired to develop dual-modal fluorescence and magnetic resonance imaging (FI/MRI) probes in medical imaging because it unites the respective advantages of each imaging modality: high sensitivity of FI and superior spatial resolution of MRI. In this study, a facile strategy to fabricate a new bimodal imaging nanoprobe (Gd-CQDs@N-Fe3O4) was reported by integrating the fluorescence ability of carbon quantum dots (CQDs) and T1 and T2 contrast-enhancing functionality of Gd(III) ions and Fe3O4 nanoparticles into a single hybrid nanostructure. The hybrid composites were investigated by FT-IR, XRD, TEM, XPS, VSM, and so on, which confirmed that Gd-CQDs@N-Fe3O4 nanoparticles were successfully obtained and exhibited superparamagnetic property at room temperature. The derived nanoprobes presented an excitation wavelength-independent emission behavior. In addition, r1 and r2 relaxivities of the synthesized imaging nanoprobes were measured to be 5.16 and 115.6 mM− 1 s− 1, which nominated Gd-CQDs@N-Fe3O4 nanocomposites as a suitable T1-T2 contrast agent. The Gd-CQDs@N-Fe3O4 nanoparticles combining two synergetic imaging modalities showed great potential in FI/MRI dual-modal imaging for a more complementary and accurate detection.
Original language | English (US) |
---|---|
Pages (from-to) | 113-120 |
Number of pages | 8 |
Journal | Magnetic Resonance Imaging |
Volume | 68 |
DOIs | |
State | Published - May 2020 |
Keywords
- Dual-modal imaging
- FeO
- Fluorescence
- Gd-doped carbon quantum dots
- Relaxivity
ASJC Scopus subject areas
- Biophysics
- Biomedical Engineering
- Radiology Nuclear Medicine and imaging