Fluence-field modulated x-ray CT using multiple aperture devices

J. Webster Stayman, Aswin Mathews, Wojciech Zbijewski, Grace Gang, Jeffrey Siewerdsen, Satomi Kawamoto, Ira Blevis, Reuven Levinson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

27 Scopus citations

Abstract

We introduce a novel strategy for fluence field modulation (FFM) in x-ray CT using multiple aperture devices (MADs). MAD filters permit FFM by blocking or transmitting the x-ray beam on a fine (0.1-1 mm) scale. The filters have a number of potential advantages over other beam modulation strategies including the potential for a highly compact design, modest actuation speed and acceleration requirements, and spectrally neutral filtration due to their essentially binary action. In this work, we present the underlying MAD filtration concept including a design process to achieve a specific class of FFM patterns. A set of MAD filters is fabricated using a tungsten laser sintering process and integrated into an x-ray CT test bench. A characterization of the MAD filters is conducted and compared to traditional attenuating bowtie filters and the ability to flatten the fluence profile for a 32 cm acrylic phantom is demonstrated. MAD-filtered tomographic data was acquired on the CT test bench and reconstructed without artifacts associated with the MAD filter. These initial studies suggest that MAD-based FFM is appropriate for integration in clinical CT system to create patient-specific fluence field profile and reduce radiation exposures.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2016
Subtitle of host publicationPhysics of Medical Imaging
EditorsDespina Kontos, Joseph Y. Lo, Thomas G. Flohr
PublisherSPIE
ISBN (Electronic)9781510600188
DOIs
StatePublished - 2016
EventMedical Imaging 2016: Physics of Medical Imaging - San Diego, United States
Duration: Feb 28 2016Mar 2 2016

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume9783
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2016: Physics of Medical Imaging
Country/TerritoryUnited States
CitySan Diego
Period2/28/163/2/16

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging
  • Biomaterials

Fingerprint

Dive into the research topics of 'Fluence-field modulated x-ray CT using multiple aperture devices'. Together they form a unique fingerprint.

Cite this