@inproceedings{9f3691625fdd43ce8e5130bab9513782,
title = "Fluence-field modulated x-ray CT using multiple aperture devices",
abstract = "We introduce a novel strategy for fluence field modulation (FFM) in x-ray CT using multiple aperture devices (MADs). MAD filters permit FFM by blocking or transmitting the x-ray beam on a fine (0.1-1 mm) scale. The filters have a number of potential advantages over other beam modulation strategies including the potential for a highly compact design, modest actuation speed and acceleration requirements, and spectrally neutral filtration due to their essentially binary action. In this work, we present the underlying MAD filtration concept including a design process to achieve a specific class of FFM patterns. A set of MAD filters is fabricated using a tungsten laser sintering process and integrated into an x-ray CT test bench. A characterization of the MAD filters is conducted and compared to traditional attenuating bowtie filters and the ability to flatten the fluence profile for a 32 cm acrylic phantom is demonstrated. MAD-filtered tomographic data was acquired on the CT test bench and reconstructed without artifacts associated with the MAD filter. These initial studies suggest that MAD-based FFM is appropriate for integration in clinical CT system to create patient-specific fluence field profile and reduce radiation exposures.",
author = "Stayman, {J. Webster} and Aswin Mathews and Wojciech Zbijewski and Grace Gang and Jeffrey Siewerdsen and Satomi Kawamoto and Ira Blevis and Reuven Levinson",
note = "Publisher Copyright: {\textcopyright} 2016 SPIE.; Medical Imaging 2016: Physics of Medical Imaging ; Conference date: 28-02-2016 Through 02-03-2016",
year = "2016",
doi = "10.1117/12.2214358",
language = "English (US)",
series = "Progress in Biomedical Optics and Imaging - Proceedings of SPIE",
publisher = "SPIE",
editor = "Despina Kontos and Lo, {Joseph Y.} and Flohr, {Thomas G.}",
booktitle = "Medical Imaging 2016",
}