TY - JOUR
T1 - Flow-induced responses in piglet isolated cerebral arteries
AU - Shimoda, Larissa A.
AU - Norins, Nan A.
AU - Jeutter, Dean C.
AU - Madden, Jane A.
N1 - Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 1996/4
Y1 - 1996/4
N2 - Although cerebral hemorrhage is a widely occurring neurologic disorder thought to be caused by fluctuating blood flow, the response to flow in the neonatal cerebrovasculature has not been characterized. In the present study, we examined the effect of changing flow on middle cerebral artery diameter and pathways by which flow modulates cerebrovascular tone. Arteries from 2-14-d-old piglets were mounted on cannulas and bathed in and perfused with physiologic saline solution. An electronic system controlled pressure and a syringe pump provided constant flow. The transmural pressure was held constant at 20 mm Hg, and changes in vessel diameter were measured as flow was increased in steps from 0 to 1.60 mL/min (flow/diameter curves). Increasing flow at constant pressure resulted in constriction at flows from 0.077 to 0.152 mL/min and dilation at flows from 0.212 to 1.60 mL/min. The flow/diameter curves were repeated in arteries bathed in Na+-reduced or Ca2+-free physiologic saline solution; denervated with 6-hydroxydopamine; or treated with indomethacin, N-nitro-L-arginine methyl ester, N(ω)-nitro-L-arginine (NLA), and L-arginine), ryanodine, or glutaraldehyde. In Na+-reduced and in Ca2+-free physiologic saline solution, flow constriction was eliminated. Neither indomethacin nor 6-hydroxydopamine affected the biphasic response. N-Nitro-L-arginineL, NLA, and ryanodine blocked dilation, whereas L-arginine restored dilation in NLA-treated arteries. These data suggest that neither prostaglandins nor adrenergic nerve endings participate in flow-induced responses in piglet cerebral arteries. Elimination of flow-constriction by Na+ reduction or Ca2+ removal is consistent with findings in other artery types. The elimination of dilation by N-nitro-L-arginine methyl ester, NLA, and ryanodine suggests that dilation is mediated by nitric oxide and intracellular Ca2+. Whereas the contractile and dilatory responses to agonists remained intact after glutaraldehyde perfusion, both flow-induced constriction and dilation were eliminated, indicating that both types of flow responses result from endothelial cell deformation.
AB - Although cerebral hemorrhage is a widely occurring neurologic disorder thought to be caused by fluctuating blood flow, the response to flow in the neonatal cerebrovasculature has not been characterized. In the present study, we examined the effect of changing flow on middle cerebral artery diameter and pathways by which flow modulates cerebrovascular tone. Arteries from 2-14-d-old piglets were mounted on cannulas and bathed in and perfused with physiologic saline solution. An electronic system controlled pressure and a syringe pump provided constant flow. The transmural pressure was held constant at 20 mm Hg, and changes in vessel diameter were measured as flow was increased in steps from 0 to 1.60 mL/min (flow/diameter curves). Increasing flow at constant pressure resulted in constriction at flows from 0.077 to 0.152 mL/min and dilation at flows from 0.212 to 1.60 mL/min. The flow/diameter curves were repeated in arteries bathed in Na+-reduced or Ca2+-free physiologic saline solution; denervated with 6-hydroxydopamine; or treated with indomethacin, N-nitro-L-arginine methyl ester, N(ω)-nitro-L-arginine (NLA), and L-arginine), ryanodine, or glutaraldehyde. In Na+-reduced and in Ca2+-free physiologic saline solution, flow constriction was eliminated. Neither indomethacin nor 6-hydroxydopamine affected the biphasic response. N-Nitro-L-arginineL, NLA, and ryanodine blocked dilation, whereas L-arginine restored dilation in NLA-treated arteries. These data suggest that neither prostaglandins nor adrenergic nerve endings participate in flow-induced responses in piglet cerebral arteries. Elimination of flow-constriction by Na+ reduction or Ca2+ removal is consistent with findings in other artery types. The elimination of dilation by N-nitro-L-arginine methyl ester, NLA, and ryanodine suggests that dilation is mediated by nitric oxide and intracellular Ca2+. Whereas the contractile and dilatory responses to agonists remained intact after glutaraldehyde perfusion, both flow-induced constriction and dilation were eliminated, indicating that both types of flow responses result from endothelial cell deformation.
UR - http://www.scopus.com/inward/record.url?scp=0029919209&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029919209&partnerID=8YFLogxK
U2 - 10.1203/00006450-199604000-00002
DO - 10.1203/00006450-199604000-00002
M3 - Article
C2 - 8848328
AN - SCOPUS:0029919209
SN - 0031-3998
VL - 39
SP - 574
EP - 583
JO - Pediatric research
JF - Pediatric research
IS - 4 I
ER -