Finding novelty with uncertainty

Jacob C. Reinhold, Yufan He, Shizhong Han, Yunqiang Chen, Dashan Gao, Junghoon Lee, Jerry L. Prince, Aaron Carass

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Medical images are often used to detect and characterize pathology and disease; however, automatically identifying and segmenting pathology in medical images is challenging because the appearance of pathology across diseases varies widely. To address this challenge, we propose a Bayesian deep learning method that learns to translate healthy computed tomography images to magnetic resonance images and simultaneously calculates voxel-wise uncertainty. Since high uncertainty occurs in pathological regions of the image, this uncertainty can be used for unsupervised anomaly segmentation. We show encouraging experimental results on an unsupervised anomaly segmentation task by combining two types of uncertainty into a novel quantity we call scibilic uncertainty.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2020
Subtitle of host publicationImage Processing
EditorsIvana Isgum, Bennett A. Landman
PublisherSPIE
ISBN (Electronic)9781510633933
DOIs
StatePublished - 2020
EventMedical Imaging 2020: Image Processing - Houston, United States
Duration: Feb 17 2020Feb 20 2020

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume11313
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2020: Image Processing
Country/TerritoryUnited States
CityHouston
Period2/17/202/20/20

Keywords

  • Image translation
  • Uncertainty quantification
  • Unsupervised anomaly segmentation

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Finding novelty with uncertainty'. Together they form a unique fingerprint.

Cite this