Fetal tissue engineering: Diaphragmatic replacement

Dario O. Fauza, Jennifer J. Marler, Rahul Koka, R. Armour Forse, John E. Mayer, Joseph P. Vacanti

Research output: Contribution to journalArticlepeer-review

90 Scopus citations


Background/Purpose: Prosthetic repair of congenital diaphragmatic hernia has been associated with high complication rates. This study was aimed at applying fetal tissue engineering to diaphragmatic replacement. Methods: Fetal lambs underwent harvest of skeletal muscle specimens. Once expanded in vitro, fetal myoblasts were suspended in a collagen hydrogel submitted to controlled radial tension. The construct was then placed in a bioreactor. After birth, all animals underwent creation of 2 diaphragmatic defects. One defect was repaired with the autologousengineered construct placed in between 2 acellular supporting membranes and the other with an identical construct but without any cells. Each animal was its own control (graft, n = 10). Animals were killed at different time-points postimplantation for histologic examination. Statistical analysis was by analysis of variance (ANOVA). Results: Fetal myoblasts expanded up to twice as fast as neonatal cells. Hydrogel-based radial tension enhanced construct architecture by eliciting cell organization within the scaffold. No eventration was present in 4 of 5 engineered constructs but in 0 of 5 acellular grafts (P <. 05). At harvest, engineered constructs were thick and histologically resembled normal skeletal muscle, whereas acellular grafts were thin, floppy, and showed low cell density with increased fibrosis. Conclusions: Unlike acellular grafts, engineered cellular diaphragmatic constructs are anatomically and histologically similar to normal muscle. Fetal tissue engineering may be a viable alternative for diaphragmatic replacement.

Original languageEnglish (US)
Pages (from-to)146-151
Number of pages6
JournalJournal of pediatric surgery
Issue number1
StatePublished - 2001
Externally publishedYes


  • Birth defects
  • Congenital anomalies
  • Congenital diaphragmatic hernia
  • Diaphragm
  • Fetal surgery
  • Fetus
  • Neonate
  • Prenatal
  • Tissue engineering
  • Transplantation
  • Videofetoscopy

ASJC Scopus subject areas

  • Surgery
  • Pediatrics, Perinatology, and Child Health


Dive into the research topics of 'Fetal tissue engineering: Diaphragmatic replacement'. Together they form a unique fingerprint.

Cite this