TY - JOUR
T1 - Fe3O4@Au/reduced graphene oxide nanostructures
T2 - Combinatorial effects of radiotherapy and photothermal therapy on oral squamous carcinoma KB cell line
AU - Shakerian Ardakani, Tahereh
AU - Meidanchi, Alireza
AU - Shokri, Aliasghar
AU - Shakeri-Zadeh, Ali
N1 - Funding Information:
The author would like to thank the Research Council of Payame Noor University (PNU) and Iran Nanotechnology Initiative Council for financial support of the work
Publisher Copyright:
© 2020 Elsevier Ltd and Techna Group S.r.l.
PY - 2020/12/15
Y1 - 2020/12/15
N2 - Combination therapy including radiotherapy (RT) and photothermal therapy (PTT), as an alternative treatment for cancer treatment, recently has generated substantial interest. Graphene-based nanocarbons and gold content metallic nanoparticles, as one of the most attractive materials with their extraordinary physical and chemical properties, are extremely useful in this regard. We herein reported the effects of combination of cancer therapy including RT (doses of 2 and 4 Gy) and PTT (808 nm laser irradiation, NIR irradiation) as radio-photothermal therapy (RPTT) of KB oral squamous carcinoma cell line in the presence of Fe3O4@Au/reduced graphene oxide (rGO) nanostructures (NSs) at different concentrations. Fe3O4@Au/rGO NSs with different rGO contents have been synthesized by hydrothermal reaction method. They characterized by XRD, FE-SEM, TEM, EDS, FTIR and TGA. Cell viability for cytotoxicity, RT, PTT and RPTT were studied by MTT (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay. High photothermal conversion efficiency of Fe3O4@Au/rGO NSs reaches to 61%. The resulting Fe3O4@Au NPs with approximate size of about 10–60 nm covered the rGO nanosheets with 40 wt% rGO at concentration of 20 μg ml−1, exhibited satisfactory cytotoxicity. They provided significant cell destruction under RT, PTT and specially RPTT in dose of 4 Gy. Furthermore, they have good biocompatibility on the healthy cells. Our results show that Fe3O4@Au/rGO NSs integrated with radiosensitization, photothermal therapy and their combination promising for nanomedicine and clinical applications.
AB - Combination therapy including radiotherapy (RT) and photothermal therapy (PTT), as an alternative treatment for cancer treatment, recently has generated substantial interest. Graphene-based nanocarbons and gold content metallic nanoparticles, as one of the most attractive materials with their extraordinary physical and chemical properties, are extremely useful in this regard. We herein reported the effects of combination of cancer therapy including RT (doses of 2 and 4 Gy) and PTT (808 nm laser irradiation, NIR irradiation) as radio-photothermal therapy (RPTT) of KB oral squamous carcinoma cell line in the presence of Fe3O4@Au/reduced graphene oxide (rGO) nanostructures (NSs) at different concentrations. Fe3O4@Au/rGO NSs with different rGO contents have been synthesized by hydrothermal reaction method. They characterized by XRD, FE-SEM, TEM, EDS, FTIR and TGA. Cell viability for cytotoxicity, RT, PTT and RPTT were studied by MTT (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay. High photothermal conversion efficiency of Fe3O4@Au/rGO NSs reaches to 61%. The resulting Fe3O4@Au NPs with approximate size of about 10–60 nm covered the rGO nanosheets with 40 wt% rGO at concentration of 20 μg ml−1, exhibited satisfactory cytotoxicity. They provided significant cell destruction under RT, PTT and specially RPTT in dose of 4 Gy. Furthermore, they have good biocompatibility on the healthy cells. Our results show that Fe3O4@Au/rGO NSs integrated with radiosensitization, photothermal therapy and their combination promising for nanomedicine and clinical applications.
KW - Cytotoxicity
KW - FeO@Au/rGO nanostructures
KW - Graphene oxide
KW - Photothermal conversion efficiency
KW - Photothermal therapy
KW - Radiosensitizer
UR - http://www.scopus.com/inward/record.url?scp=85089506279&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089506279&partnerID=8YFLogxK
U2 - 10.1016/j.ceramint.2020.08.027
DO - 10.1016/j.ceramint.2020.08.027
M3 - Article
AN - SCOPUS:85089506279
SN - 0272-8842
VL - 46
SP - 28676
EP - 28685
JO - Ceramics International
JF - Ceramics International
IS - 18
ER -