Feasibility study of a Raman spectroscopic route to drug detection

MacIej S. Wróbel, Soumik Siddhanta, Małgorzata Jȩdrzejewska-Szczerska, Janusz Smulko, Ishan Barman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present an surface-enhanced Raman spectroscopy (SERS) approach for detection of drugs of abuse in whole human blood. We utilize a near infrared laser with 830 nm excitation wavelength in order to reduce the influence of fluorescence on the spectra of blood. However, regular plasmon resonance peak of plasmonic nanoparticles, such as silver or gold fall in a much lower wavelength regime about 400 nm. Therefore, we have shifted the plasmon resonance of nanoparticles to match that of an excitation laser wavelength, by fabrication of the silver-core gold-shell nanoparticles. By combining the laser and plasmon resonance shift towards longer wavelengths we have achieved a great reduction in background fluorescence of blood. Great enhancement of Raman signal coming solely from drugs was achieved without any prominent lines coming from the erythrocytes. We have applied chemometric processing methods, such as Principal Component Analysis (PCA), to detect the elusive differences in the Raman bands which are specific for the investigated drugs. We have achieved good classification for the samples containing particular drugs (e.g., butalbital, α-hydroxyalprazolam). Furthermore, a quantitative analysis was carried out to assess the limit of detection (LOD) using Partial Least Squares (PLS) regression method. In conclusion, our LOD values obtained for each class of drugs was competitive with the gold standard GC/MS method.

Original languageEnglish (US)
Title of host publicationNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIV
EditorsDan V. Nicolau, Dror Fixler, Alexander N. Cartwright
PublisherSPIE
ISBN (Electronic)9781510605954
DOIs
StatePublished - 2017
EventNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIV 2017 - San Francisco, United States
Duration: Jan 30 2017Feb 1 2017

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10077
ISSN (Print)1605-7422

Conference

ConferenceNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIV 2017
Country/TerritoryUnited States
CitySan Francisco
Period1/30/172/1/17

Keywords

  • Blood
  • Nanoparticles
  • Raman spectroscopy
  • SERS

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Feasibility study of a Raman spectroscopic route to drug detection'. Together they form a unique fingerprint.

Cite this