@article{22b1198d2c5b4d21b7e53466d3a47ae6,
title = "Fast detection of de novo copy number variants from SNP arrays for case-parent trios",
abstract = "Background: In studies of case-parent trios, we define copy number variants (CNVs) in the offspring that differ from the parental copy numbers as de novo and of interest for their potential functional role in disease. Among the leading array-based methods for discovery of de novo CNVs in case-parent trios is the joint hidden Markov model (HMM) implemented in the PennCNV software. However, the computational demands of the joint HMM are substantial and the extent to which false positive identifications occur in case-parent trios has not been well described. We evaluate these issues in a study of oral cleft case-parent trios.Results: Our analysis of the oral cleft trios reveals that genomic waves represent a substantial source of false positive identifications in the joint HMM, despite a wave-correction implementation in PennCNV. In addition, the noise of low-level summaries of relative copy number (log R ratios) is strongly associated with batch and correlated with the frequency of de novo CNV calls. Exploiting the trio design, we propose a univariate statistic for relative copy number referred to as the minimum distance that can reduce technical variation from probe effects and genomic waves. We use circular binary segmentation to segment the minimum distance and maximum a posteriori estimation to infer de novo CNVs from the segmented genome. Compared to PennCNV on simulated data, MinimumDistance identifies fewer false positives on average and is comparable to PennCNV with respect to false negatives. Genomic waves contribute to discordance of PennCNV and MinimumDistance for high coverage de novo calls, while highly concordant calls on chromosome 22 were validated by quantitative PCR. Computationally, MinimumDistance provides a nearly 8-fold increase in speed relative to the joint HMM in a study of oral cleft trios.Conclusions: Our results indicate that batch effects and genomic waves are important considerations for case-parent studies of de novo CNV, and that the minimum distance is an effective statistic for reducing technical variation contributing to false de novo discoveries. Coupled with segmentation and maximum a posteriori estimation, our algorithm compares favorably to the joint HMM with MinimumDistance being much faster.",
keywords = "Batch effects, Copy number variants, De novo, Genomic waves, High-throughput arrays, Oral cleft, Segmentation, Trios",
author = "Scharpf, {Robert B.} and Beaty, {Terri H.} and Holger Schwender and Younkin, {Samuel G.} and Scott, {Alan F.} and Ingo Ruczinski",
note = "Funding Information: We sincerely thank all of the families from each recruitment site for participating in this international study, and we gratefully acknowledge the assistances of clinical, field and laboratory staff whose work made this study possible. We thank Drs. J.C. Murray, M.L. Marazita, R.G. Munger, A.J. Wilcox and R.T. Lie who directed individual research projects contributing to the International Cleft Consortium, which was part of the Gene, Environment Association Studies (GENEVA) Consortium. Our group benefited greatly from the work of the entire GENEVA consortium, and especially its Coordinating Center (directed by Drs. B. Weir and C. Laurie of the University of Washington) in data cleaning and preparation for submission to the Database for Genotypes and Phenotypes (dbGaP). We acknowledge the leadership of Dr. T. Manolio of NHGRI and Dr. E.L. Harris of NIDCR. Genotyping services were provided by the Center for Inherited Disease Research (CIDR), with substantial input from Drs. K. Doheny, H. Ling and E.W. Pugh. Raw data used for these analyses are available for further research into the etiology of craniofacial malformations from dbGaP [57]. We appreciate data management assistance from J.B. Hetmanski. We thank the GENEVA chromosomal anomalies working group lead by Dr. C. Laurie. Finally, we thank Moiz Bootwalla for assisting in the development of the R package. RBS is supported by NIH grant R00HG005015. IR and SY are supported by R01GM083084 and R03DE021437. HS is supported by the DFG (Research Training Group 1032 ”Statistical Modeling”) and grant SCHW1508/3-1. The consortium for GWAS genotyping and analysis was supported by the National Institute for Dental and Craniofacial Research through U01-DE-018993; the International Consortium to Identify Genes and Interactions Controlling Oral Clefts, 2007-2009. This project was part of the Gene, Environment Association Studies Consortium (GENEVA) funded by the National Human Genome Research Institute (NHGRI) to enhance communication and collaboration among investigators conducting genome-wide studies for a variety of complex diseases. Genotyping services were provided by the Center for Inherited Disease Research, funded through a federal contract from the US National Institutes of Health to Johns Hopkins University (contract number HHSN268200782096C). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.",
year = "2012",
month = dec,
day = "12",
doi = "10.1186/1471-2105-13-330",
language = "English (US)",
volume = "13",
journal = "BMC Bioinformatics",
issn = "1471-2105",
publisher = "BioMed Central",
number = "1",
}