Abstract
δ-opioid receptors (DORs) form heteromers with μ-opioid receptors (MORs) and negatively regulate MOR-mediated spinal analgesia. However, the underlying mechanism remains largely unclear. The present study shows that the activity of MORs can be enhanced by preventing MORs from DOR-mediated codegradation. Treatment with DOR-specific agonists led to endocytosis of both DORs and MORs. These receptors were further processed for ubiquitination and lysosomal degradation, resulting in a reduction of surface MORs. Such effects were attenuated by treatment with an interfering peptide containing the first transmembrane domain of MOR (MORTM1), which interacted with DORs and disrupted the MOR/DOR interaction. Furthermore, the systemically applied fusion protein consisting of MORTM1 and TAT at the C terminus could disrupt the MOR/DOR interaction in the mouse spinal cord, enhance the morphine analgesia, and reduce the antinociceptive tolerance to morphine. Thus, dissociation of MORs from DORs in the cell membrane is a potential strategy to improve opioid analgesic therapies.
Original language | English (US) |
---|---|
Pages (from-to) | 120-131 |
Number of pages | 12 |
Journal | Neuron |
Volume | 69 |
Issue number | 1 |
DOIs | |
State | Published - Jan 13 2011 |
Externally published | Yes |
ASJC Scopus subject areas
- General Neuroscience