FaceNet2ExpNet: Regularizing a Deep Face Recognition Net for Expression Recognition

Hui Ding, Shaohua Kevin Zhou, Rama Chellappa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Relatively small data sets available for expression recognition research make the training of deep networks very challenging. Although fine-tuning can partially alleviate the issue, the performance is still below acceptable levels as the deep features probably contain redundant information from the pretrained domain. In this paper, we present FaceNet2ExpNet, a novel idea to train an expression recognition network based on static images. We first propose a new distribution function to model the high-level neurons of the expression network. Based on this, a two-stage training algorithm is carefully designed. In the pre-training stage, we train the convolutional layers of the expression net, regularized by the face net; In the refining stage, we append fully-connected layers to the pre-trained convolutional layers and train the whole network jointly. Visualization results show that the model trained with our method captures improved high-level expression semantics. Evaluations on four public expression databases, CK+, Oulu- CASIA, TFD, and SFEW demonstrate that our method achieves better results than state-of-the-art.

Original languageEnglish (US)
Title of host publicationProceedings - 12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017 - 1st International Workshop on Adaptive Shot Learning for Gesture Understanding and Production, ASL4GUP 2017, Biometrics in the Wild, Bwild 2017, Heterogeneous Face Recognition, HFR 2017, Joint Challenge on Dominant and Complementary Emotion Recognition Using Micro Emotion Features and Head-Pose Estimation, DCER and HPE 2017 and 3rd Facial Expression Recognition and Analysis Challenge, FERA 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages118-126
Number of pages9
ISBN (Electronic)9781509040230
DOIs
StatePublished - Jun 28 2017
Externally publishedYes
Event12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017 - Washington, United States
Duration: May 30 2017Jun 3 2017

Publication series

NameProceedings - 12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017 - 1st International Workshop on Adaptive Shot Learning for Gesture Understanding and Production, ASL4GUP 2017, Biometrics in the Wild, Bwild 2017, Heterogeneous Face Recognition, HFR 2017, Joint Challenge on Dominant and Complementary Emotion Recognition Using Micro Emotion Features and Head-Pose Estimation, DCER and HPE 2017 and 3rd Facial Expression Recognition and Analysis Challenge, FERA 2017

Conference

Conference12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017
Country/TerritoryUnited States
CityWashington
Period5/30/176/3/17

ASJC Scopus subject areas

  • Media Technology
  • Artificial Intelligence
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'FaceNet2ExpNet: Regularizing a Deep Face Recognition Net for Expression Recognition'. Together they form a unique fingerprint.

Cite this