Fabrication of {198Au0} radioactive composite nanodevices and their use for nanobrachytherapy

Mohamed K. Khan, Leah D. Minc, Shraddha S. Nigavekar, Muhammed S.T. Kariapper, Bindu M. Nair, Matthew Schipper, Andrew C. Cook, Wojciech G. Lesniak, Lajos P. Balogh

Research output: Contribution to journalArticlepeer-review

66 Scopus citations


We describe the simple fabrication of poly({198Au}) radioactive gold-dendrimer composite nanodevices in distinct sizes (diameter between 10 nm and 29 nm) for targeted radiopharmaceutical dose delivery to tumors in vivo. Irradiation of aqueous solutions of 197Au containing poly(amidoamine) dendrimer tetrachloroaurate salts or {197Au0} gold-dendrimer nanocomposites in a nuclear reactor resulted in the formation of positively charged and soluble poly{198Au0} radioactive composite nanodevices (CNDs). A mouse melanoma tumor model was used to test whether the poly{198Au0} CNDs can deliver a therapeutic dose. A single intratumoral injection of poly{198Au0}d=22nm CNDs in phosphate-buffered saline delivering a dose of 74 μCi resulted after 8 days in a statistically significant 45% reduction in tumor volume, when compared with untreated groups and those injected with the "cold" nanodevice. No clinical toxicity was observed during the experiments. This study provides the first proof of principle that radioactive CNDs can deliver therapeutic doses to tumors.

Original languageEnglish (US)
Pages (from-to)57-69
Number of pages13
JournalNanomedicine: Nanotechnology, Biology, and Medicine
Issue number1
StatePublished - Mar 2008
Externally publishedYes


  • Au
  • Cancer
  • Radioactive composite nanodevice

ASJC Scopus subject areas

  • Bioengineering
  • Medicine (miscellaneous)
  • Molecular Medicine
  • Biomedical Engineering
  • General Materials Science
  • Pharmaceutical Science


Dive into the research topics of 'Fabrication of {198Au0} radioactive composite nanodevices and their use for nanobrachytherapy'. Together they form a unique fingerprint.

Cite this