Extracting Social Determinants of Health from Pediatric Patient Notes Using Large Language Models: Novel Corpus and Methods

Yujuan Fu, Giridhar Kaushik Ramachandran, Nicholas J. Dobbins, Namu Park, Michael Leu, Abby R. Rosenberg, Kevin Lybarger, Fei Xia, Özlem Uzuner, Meliha Yetisgen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Social determinants of health (SDoH) play a critical role in shaping health outcomes, particularly in pediatric populations where interventions can have long-term implications. SDoH are frequently studied in the Electronic Health Record (EHR), which provides a rich repository for diverse patient data. In this work, we present a novel annotated corpus, the Pediatric Social History Annotation Corpus (PedSHAC), and evaluate the automatic extraction of detailed SDoH representations using fine-tuned and in-context learning methods with Large Language Models (LLMs). PedSHAC comprises annotated social history sections from 1,260 clinical notes obtained from pediatric patients within the University of Washington (UW) hospital system. Employing an event-based annotation scheme, PedSHAC captures ten distinct health determinants to encompass living and economic stability, prior trauma, education access, substance use history, and mental health with an overall annotator agreement of 81.9 F1. Our proposed fine-tuning LLM-based extractors achieve high performance at 78.4 F1 for event arguments. In-context learning approaches with GPT-4 demonstrate promise for reliable SDoH extraction with limited annotated examples, with extraction performance at 82.3 F1 for event triggers.

Original languageEnglish (US)
Title of host publication2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
EditorsNicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
PublisherEuropean Language Resources Association (ELRA)
Pages7045-7056
Number of pages12
ISBN (Electronic)9782493814104
StatePublished - 2024
Externally publishedYes
EventJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 - Hybrid, Torino, Italy
Duration: May 20 2024May 25 2024

Publication series

Name2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings

Conference

ConferenceJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
Country/TerritoryItaly
CityHybrid, Torino
Period5/20/245/25/24

Keywords

  • Information Extraction
  • Large Language Models
  • Pediatrics
  • Social Determinants of Health

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computational Theory and Mathematics
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Extracting Social Determinants of Health from Pediatric Patient Notes Using Large Language Models: Novel Corpus and Methods'. Together they form a unique fingerprint.

Cite this