Exploiting gene-environment independence for analysis of case-control studies: An empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency

Bhramar Mukherjee, Nilanjan Chatterjee

Research output: Contribution to journalArticlepeer-review

139 Scopus citations

Abstract

Standard prospective logistic regression analysis of case-control data often leads to very imprecise estimates of gene-environment interactions due to small numbers of cases or controls in cells of crossing genotype and exposure. In contrast, under the assumption of gene-environment independence, modern "retrospective" methods, including the "case-only" approach, can estimate the interaction parameters much more precisely, but they can be seriously biased when the underlying assumption of gene-environment independence is violated. In this article, we propose a novel empirical Bayes-type shrinkage estimator to analyze case-control data that can relax the gene-environment independence assumption in a data-adaptive fashion. In the special case, involving a binary gene and a binary exposure, the method leads to an estimator of the interaction log odds ratio parameter in a simple closed form that corresponds to an weighted average of the standard case-only and case-control estimators. We also describe a general approach for deriving the new shrinkage estimator and its variance within the retrospective maximum-likelihood framework developed by Chatterjee and Carroll (2005, Biometrika 92, 399-418). Both simulated and real data examples suggest that the proposed estimator strikes a balance between bias and efficiency depending on the true nature of the gene-environment association and the sample size for a given study.

Original languageEnglish (US)
Pages (from-to)685-694
Number of pages10
JournalBiometrics
Volume64
Issue number3
DOIs
StatePublished - Sep 2008
Externally publishedYes

Keywords

  • Case-only designs
  • Gene-environment interaction
  • Profile likelihood
  • Retrospective analysis
  • Semiparametrics

ASJC Scopus subject areas

  • Statistics and Probability
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology
  • General Agricultural and Biological Sciences
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Exploiting gene-environment independence for analysis of case-control studies: An empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency'. Together they form a unique fingerprint.

Cite this