Exact convex confidence-weighted learning

Koby Crammer, Mark Dredze, Fernando Pereira

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Confidence-weighted (CW) learning [6], an online learning method for linear classifiers, maintains a Gaussian distributions over weight vectors, with a covariance matrix that represents uncertainty about weights and correlations. Confidence constraints ensure that a weight vector drawn from the hypothesis distribution correctly classifies examples with a specified probability. Within this framework, we derive a new convex form of the constraint and analyze it in the mistake bound model. Empirical evaluation with both synthetic and text data shows our version of CW learning achieves lower cumulative and out-of-sample errors than commonly used first-order and second-order online methods.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
PublisherNeural Information Processing Systems
Pages345-352
Number of pages8
ISBN (Print)9781605609492
StatePublished - 2009
Externally publishedYes
Event22nd Annual Conference on Neural Information Processing Systems, NIPS 2008 - Vancouver, BC, Canada
Duration: Dec 8 2008Dec 11 2008

Publication series

NameAdvances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference

Other

Other22nd Annual Conference on Neural Information Processing Systems, NIPS 2008
Country/TerritoryCanada
CityVancouver, BC
Period12/8/0812/11/08

ASJC Scopus subject areas

  • Information Systems

Fingerprint

Dive into the research topics of 'Exact convex confidence-weighted learning'. Together they form a unique fingerprint.

Cite this