TY - JOUR
T1 - Evolutionarily conserved network properties of intrinsically disordered proteins
AU - Rangarajan, Nivedita
AU - Kulkarni, Prakash
AU - Hannenhalli, Sridhar
N1 - Funding Information:
Authors would like to thank Avinash Sahu, Shrutii Sarda, Justin Malin, Govindan Rangarajan, Michelle Girvan, and Mike Flanigan for their comments and discussion. S.H. was supported by National Institutes of Health grant R01GM100335. N.R. was supported by an INSPIRE Scholarship from the Department of Science and Technology, Government of India.
Publisher Copyright:
© 2015 Rangarajan et al.
PY - 2015/5/14
Y1 - 2015/5/14
N2 - Background: Intrinsically disordered proteins (IDPs) lack a stable tertiary structure in isolation. Remarkably, however, a substantial portion of IDPs undergo disorder-to-order transitions upon binding to their cognate partners. Structural flexibility and binding plasticity enable IDPs to interact with a broad range of partners. However, the broader network properties that could provide additional insights into the functional role of IDPs are not known. Results: Here, we report the first comprehensive survey of network properties of IDP-induced subnetworks in multiple species from yeast to human. Our results show that IDPs exhibit greater-than-expected modularity and are connected to the rest of the protein interaction network (PIN) via proteins that exhibit the highest betweenness centrality and connect to fewer-than-expected IDP communities, suggesting that they form critical communication links from IDP modules to the rest of the PIN. Moreover, we found that IDPs are enriched at the top level of regulatory hierarchy. Conclusion: Overall, our analyses reveal coherent and remarkably conserved IDP-centric network properties, namely, modularity in IDP-induced network and a layer of critical nodes connecting IDPs with the rest of the PIN.
AB - Background: Intrinsically disordered proteins (IDPs) lack a stable tertiary structure in isolation. Remarkably, however, a substantial portion of IDPs undergo disorder-to-order transitions upon binding to their cognate partners. Structural flexibility and binding plasticity enable IDPs to interact with a broad range of partners. However, the broader network properties that could provide additional insights into the functional role of IDPs are not known. Results: Here, we report the first comprehensive survey of network properties of IDP-induced subnetworks in multiple species from yeast to human. Our results show that IDPs exhibit greater-than-expected modularity and are connected to the rest of the protein interaction network (PIN) via proteins that exhibit the highest betweenness centrality and connect to fewer-than-expected IDP communities, suggesting that they form critical communication links from IDP modules to the rest of the PIN. Moreover, we found that IDPs are enriched at the top level of regulatory hierarchy. Conclusion: Overall, our analyses reveal coherent and remarkably conserved IDP-centric network properties, namely, modularity in IDP-induced network and a layer of critical nodes connecting IDPs with the rest of the PIN.
UR - http://www.scopus.com/inward/record.url?scp=84929340276&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84929340276&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0126729
DO - 10.1371/journal.pone.0126729
M3 - Article
C2 - 25974317
AN - SCOPUS:84929340276
SN - 1932-6203
VL - 10
JO - PloS one
JF - PloS one
IS - 5
M1 - e0126729
ER -