TY - JOUR
T1 - Evaluation of DIR schemes on tumor/organ with progressive shrinkage
T2 - Accuracy of tumor/organ internal tissue tracking during the radiation treatment
AU - Qin, An
AU - Chen, Shupeng
AU - Liang, Jian
AU - Snyder, Michael
AU - Yan, Di
N1 - Publisher Copyright:
© 2022 The Author(s)
PY - 2022/8
Y1 - 2022/8
N2 - Purpose: Accuracy of intratumoral treatment dose accumulation and response assessment highly depends on the accuracy of a DIR method. However, achievable accuracy of the existing DIR methods for tumor/organ with large and progressive shrinkage during the radiotherapy course have not been explored. This study aimed to use a bio-tissue phantom to quantify the achievable accuracy of different DIR schemes. Materials /methods: A fresh porcine liver was used for phantom material. Sixty gold markers were implanted on the surface and inside of the liver. To simulate the progressive radiation-induced tumor/organ shrinkage, the phantom was heated using a microwave oven incrementally from 30 s to 200 s in 8 phases. For each phase, the phantom was scanned by CT. Two extra image sets were generated from the original images: 1) the image set with overriding the high-density gold markers (feature image); 2) the image set with overriding the entire phantom to the mean soft tissue intensity (featureless image). Ten DIR schemes were evaluated to mimic clinical treatment situations of tumor/critical organ with respect to their surface and internal condition of image features, availability of intermediate feedback images and DIR methods. The internal marker's positions were utilized to evaluate DIR accuracy quantified by target registration error (TRE). Results: Volume reduction was about 20 % ∼ 40 % of the initial volume after 90 s ∼ 200 s of the heating. Without image features on the surface and inside of the phantom, the hybrid-DIR (image-based DIR followed by biomechanical model-based refinement) with the surface constraint achieved the registration TRE from 2.6 ± 1.2 mm to 5.3 ± 2.6 mm proportional to the %volume shrinkage. Meanwhile, the hybrid-DIR with the surface-marker constraint achieved the TRE from 2.4 ± 1.2 mm to 2.6 ± 1.0 mm. If both the surface and internal image features would be viable on the feedback images, the achievable accuracy could be minimal with the TRE from 1.6 ± 0.9 mm to 1.9 ± 1.2 mm. Conclusions: Standard DIR methods cannot guarantee intratumoral tissue registration accuracy for tumor/organ with large progressive shrinkage. Achievable accuracy with using the hybrid DIR method is highly dependent on the surface registration accuracy. If the surface registration mean TRE can be controlled within 2 mm, the mean TRE of internal tissue can be controlled within 3 mm.
AB - Purpose: Accuracy of intratumoral treatment dose accumulation and response assessment highly depends on the accuracy of a DIR method. However, achievable accuracy of the existing DIR methods for tumor/organ with large and progressive shrinkage during the radiotherapy course have not been explored. This study aimed to use a bio-tissue phantom to quantify the achievable accuracy of different DIR schemes. Materials /methods: A fresh porcine liver was used for phantom material. Sixty gold markers were implanted on the surface and inside of the liver. To simulate the progressive radiation-induced tumor/organ shrinkage, the phantom was heated using a microwave oven incrementally from 30 s to 200 s in 8 phases. For each phase, the phantom was scanned by CT. Two extra image sets were generated from the original images: 1) the image set with overriding the high-density gold markers (feature image); 2) the image set with overriding the entire phantom to the mean soft tissue intensity (featureless image). Ten DIR schemes were evaluated to mimic clinical treatment situations of tumor/critical organ with respect to their surface and internal condition of image features, availability of intermediate feedback images and DIR methods. The internal marker's positions were utilized to evaluate DIR accuracy quantified by target registration error (TRE). Results: Volume reduction was about 20 % ∼ 40 % of the initial volume after 90 s ∼ 200 s of the heating. Without image features on the surface and inside of the phantom, the hybrid-DIR (image-based DIR followed by biomechanical model-based refinement) with the surface constraint achieved the registration TRE from 2.6 ± 1.2 mm to 5.3 ± 2.6 mm proportional to the %volume shrinkage. Meanwhile, the hybrid-DIR with the surface-marker constraint achieved the TRE from 2.4 ± 1.2 mm to 2.6 ± 1.0 mm. If both the surface and internal image features would be viable on the feedback images, the achievable accuracy could be minimal with the TRE from 1.6 ± 0.9 mm to 1.9 ± 1.2 mm. Conclusions: Standard DIR methods cannot guarantee intratumoral tissue registration accuracy for tumor/organ with large progressive shrinkage. Achievable accuracy with using the hybrid DIR method is highly dependent on the surface registration accuracy. If the surface registration mean TRE can be controlled within 2 mm, the mean TRE of internal tissue can be controlled within 3 mm.
KW - Biomechanical model
KW - Biotissue phantom
KW - Deformable image registration
KW - Treatment Response assessment
UR - http://www.scopus.com/inward/record.url?scp=85132347698&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85132347698&partnerID=8YFLogxK
U2 - 10.1016/j.radonc.2022.05.039
DO - 10.1016/j.radonc.2022.05.039
M3 - Article
C2 - 35667570
AN - SCOPUS:85132347698
SN - 0167-8140
VL - 173
SP - 170
EP - 178
JO - Radiotherapy and Oncology
JF - Radiotherapy and Oncology
ER -