TY - JOUR
T1 - Environmental risk factors for Lyme disease identified with geographic information systems
AU - Glass, G. E.
AU - Schwartz, B. S.
AU - Morgan, J. M.
AU - Johnson, D. T.
AU - Noy, P. M.
AU - Israel, E.
PY - 1995
Y1 - 1995
N2 - Objectives. A geographic information system was used to identify and locate residential environmental risk factors for Lyme disease. Methods. Data were obtained for 53 environmental variables at the residences of Lyme disease case patients in Baltimore County from 1989 through 1990 and compared with data for randomly selected addresses. A risk model was generated combining the geographic information system with logistic regression analysis. The model was validated by comparing the distribution of cases in 1991 with another group of randomly selected addresses. Results. In crude analyses, 11 environmental variables were associated with Lyme disease. In adjusted analyses, residence in forested areas (odds ratio [OR] = 3.7, 95% confidence interval [CI] = 1.2, 11.8), on specific soils (OR = 2.1, 95% CI = 1.0, 4.4), and in two regions of the county (OR = 3.5, 95% CI = 1.6, 7.4) (OR = 2.8, 95% CI = 1.0, 7.7) was associated with elevated risk of getting Lyme disease. Residence in highly developed regions was protective (OR = 0.3, 95% CI = 0.1, 1.0). The risk of Lyme disease in 1991 increased with risk categories defined from the 1989 through 1990 data. Conclusions. Combining a geographic information system with epidemiologic methods can be used to rapidly identify risk factors of zoonotic disease over large areas.
AB - Objectives. A geographic information system was used to identify and locate residential environmental risk factors for Lyme disease. Methods. Data were obtained for 53 environmental variables at the residences of Lyme disease case patients in Baltimore County from 1989 through 1990 and compared with data for randomly selected addresses. A risk model was generated combining the geographic information system with logistic regression analysis. The model was validated by comparing the distribution of cases in 1991 with another group of randomly selected addresses. Results. In crude analyses, 11 environmental variables were associated with Lyme disease. In adjusted analyses, residence in forested areas (odds ratio [OR] = 3.7, 95% confidence interval [CI] = 1.2, 11.8), on specific soils (OR = 2.1, 95% CI = 1.0, 4.4), and in two regions of the county (OR = 3.5, 95% CI = 1.6, 7.4) (OR = 2.8, 95% CI = 1.0, 7.7) was associated with elevated risk of getting Lyme disease. Residence in highly developed regions was protective (OR = 0.3, 95% CI = 0.1, 1.0). The risk of Lyme disease in 1991 increased with risk categories defined from the 1989 through 1990 data. Conclusions. Combining a geographic information system with epidemiologic methods can be used to rapidly identify risk factors of zoonotic disease over large areas.
UR - http://www.scopus.com/inward/record.url?scp=0029028551&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029028551&partnerID=8YFLogxK
U2 - 10.2105/AJPH.85.7.944
DO - 10.2105/AJPH.85.7.944
M3 - Article
C2 - 7604918
AN - SCOPUS:0029028551
SN - 0090-0036
VL - 85
SP - 944
EP - 948
JO - American Journal of Public Health
JF - American Journal of Public Health
IS - 7
ER -