Enhanced radiation and chemotherapy-mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors

Spencer J. Collis, Michael J. Swartz, William G. Nelson, Theodore L. DeWeese

Research output: Contribution to journalArticlepeer-review

166 Scopus citations

Abstract

Recent developments in the use of small inhibitory RNA molecules (siRNAs) to inhibit specific protein expression have highlighted the potential use of siRNA as a therapeutic agent. The double-strand break signaling/repair proteins ATM, ATR, and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are attractive targets to confer enhanced radio and chemosensitivity to tumor cells. We have designed and exogenously delivered plasmids encoding siRNAs targeting these critical kinases to human cancer cells to assess the feasibility of this concept as a clinically translatable experimental therapeutic. siRNA led to a ∼90% reduction in target protein expression. siRNAs targeting ATM and DNAPKcs gave rise to a dose-reduction factor of ∼1.4 compared with untransfected and control vector-transfected cells at the clinically relevant radiation doses. This was greater than the radiosensitivity achieved using the phosphatidylinositol 3′-kinase inhibitor Wortmannin or DNA-PKcs competitive inhibitor LY294002. A similar increased sensitivity to the alkylating agent methyl methanesulfonate (MMS) was also observed for siRNA-mediated ATR silencing. Together, these data provide strong evidence for the potential use of siRNA as a novel radiation/chemotherapysensitizing agent.

Original languageEnglish (US)
Pages (from-to)1550-1554
Number of pages5
JournalCancer Research
Volume63
Issue number7
StatePublished - Apr 1 2003

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Enhanced radiation and chemotherapy-mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors'. Together they form a unique fingerprint.

Cite this