TY - JOUR
T1 - Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects
AU - Simmons, Jon D.
AU - Lee, Yann Leei
AU - Mulekar, Sujata
AU - Kuck, Jamie L.
AU - Brevard, Sidney B.
AU - Gonzalez, Richard P.
AU - Gillespie, Mark N.
AU - Richards, William O.
PY - 2013/10
Y1 - 2013/10
N2 - Objective: Our objective was to execute a prospective cohort study to determine relationships between plasma mtDNA DAMP levels and the occurrence of systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), and mortality. Background: Mitochondrial DNA damage-associated molecular patterns (DAMPs) accumulate in the circulation after severe injury. Observations in animal models demonstrate that mtDNA DAMPs contribute to organ dysfunction; however, the link between plasma mtDNA DAMPs and outcome in severely injured human subjects has not been established. Methods: DNAwas isolated from plasma samples taken from severely injured patients at hospital days 0, 1, and 2. Real-time PCR was used to quantify selected ≈200 base pair sequences of mtDNA within the COX1, ND1, and ND6 genes, as well as from the D-Loop transcriptional regulatory region. MODS was defined as a Denver Multiple Organ Failure score of 4 or greater. Results: MtDNA DAMPs were quantified as PCR threshold cycle number. Lower threshold cycles indicate increased mtDNA DAMP content. Patients with SIRS had significantly increased mtDNA DAMP levels in all 4 sequences examined (32.14 ± 0.90 vs 29.00 ± 1.15 for COX1, 31.90 ± 0.47 vs 30.16 ± 1.42 for ND1, 32.40 ± 0.61 vs 28.94 ± 1.13 for ND6, and 33.12 ± 0.83 vs 28.30 ± 1.14 for D-Loop). Patients who developed MODS also had elevated mtDNA DAMP levels compared with those who did not (32.57 ± 0.74 vs 27.12 ± 0.66 for COX1, 32.45 ± 0.65 vs 28.20 ± 0.73 for ND1, 32.52 ± 0.56 vs 27.60 ± 0.79 for ND6, and 32.85 ± 0.75 vs 27.86 ± 1.27 for D-Loop). Patients with above-median mtDNA DAMP levels had a significantly elevated relative risk for mortality. Four patients died secondary to severe MODS. Conclusions: These findings comprise the first observational evidence that plasma mtDNA DAMPs is associated with the evolution of SIRS, MODS, and mortality in severely injured human subjects.
AB - Objective: Our objective was to execute a prospective cohort study to determine relationships between plasma mtDNA DAMP levels and the occurrence of systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), and mortality. Background: Mitochondrial DNA damage-associated molecular patterns (DAMPs) accumulate in the circulation after severe injury. Observations in animal models demonstrate that mtDNA DAMPs contribute to organ dysfunction; however, the link between plasma mtDNA DAMPs and outcome in severely injured human subjects has not been established. Methods: DNAwas isolated from plasma samples taken from severely injured patients at hospital days 0, 1, and 2. Real-time PCR was used to quantify selected ≈200 base pair sequences of mtDNA within the COX1, ND1, and ND6 genes, as well as from the D-Loop transcriptional regulatory region. MODS was defined as a Denver Multiple Organ Failure score of 4 or greater. Results: MtDNA DAMPs were quantified as PCR threshold cycle number. Lower threshold cycles indicate increased mtDNA DAMP content. Patients with SIRS had significantly increased mtDNA DAMP levels in all 4 sequences examined (32.14 ± 0.90 vs 29.00 ± 1.15 for COX1, 31.90 ± 0.47 vs 30.16 ± 1.42 for ND1, 32.40 ± 0.61 vs 28.94 ± 1.13 for ND6, and 33.12 ± 0.83 vs 28.30 ± 1.14 for D-Loop). Patients who developed MODS also had elevated mtDNA DAMP levels compared with those who did not (32.57 ± 0.74 vs 27.12 ± 0.66 for COX1, 32.45 ± 0.65 vs 28.20 ± 0.73 for ND1, 32.52 ± 0.56 vs 27.60 ± 0.79 for ND6, and 32.85 ± 0.75 vs 27.86 ± 1.27 for D-Loop). Patients with above-median mtDNA DAMP levels had a significantly elevated relative risk for mortality. Four patients died secondary to severe MODS. Conclusions: These findings comprise the first observational evidence that plasma mtDNA DAMPs is associated with the evolution of SIRS, MODS, and mortality in severely injured human subjects.
KW - DAMPs
KW - Damage-associated molecular patterns
KW - Multiple organ dysfunction syndrome
KW - SIRS
KW - Systemic inflammatory response syndrome
KW - Trauma
UR - http://www.scopus.com/inward/record.url?scp=84884502884&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884502884&partnerID=8YFLogxK
U2 - 10.1097/SLA.0b013e3182a4ea46
DO - 10.1097/SLA.0b013e3182a4ea46
M3 - Article
C2 - 23979273
AN - SCOPUS:84884502884
SN - 0003-4932
VL - 258
SP - 591
EP - 596
JO - Annals of surgery
JF - Annals of surgery
IS - 4
ER -