TY - JOUR
T1 - Elevated levels of kynurenic acid during gestation produce neurochemical, morphological, and cognitive deficits in adulthood
T2 - Implications for schizophrenia
AU - Pershing, Michelle L.
AU - Bortz, David M.
AU - Pocivavsek, Ana
AU - Fredericks, Peter J.
AU - Jørgensen, Christinna V.
AU - Vunck, Sarah A.
AU - Leuner, Benedetta
AU - Schwarcz, Robert
AU - Bruno, John P.
N1 - Publisher Copyright:
© 2014 Elsevier Ltd. All rights reserved.
PY - 2015/3
Y1 - 2015/3
N2 - The levels of kynurenic acid (KYNA), an endogenous negative modulator of alpha7 nicotinic acetylcholine receptors (α7nAChRs), are elevated in the brains of patients with schizophrenia (SZ). We reported that increases of brain KYNA in rats, through dietary exposure to its precursor kynurenine from embryonic day (ED)15 to postnatal day (PD) 21, result in neurochemical and cognitive deficits in adulthood. The present experiments focused on the effects of prenatal exposure to elevated kynurenine on measures of prefrontal excitability known to be impaired in SZ. Pregnant dams were fed a mash containing kynurenine (100 mg/day; progeny = EKYNs) from ED15 until ED22. Controls were fed an unadulterated mash (progeny = ECONs). The dietary loading procedure elevated maternal and fetal plasma kynurenine (2223% and 693% above controls, respectively) and increased fetal KYNA (forebrain; 500% above controls) on ED21. Elevations in forebrain KYNA disappeared after termination of the loading (PD2), but KYNA levels in the prefrontal cortex (PFC) were unexpectedly increased again when measured in adults (PD56-80; 75% above controls). We also observed changes in several markers of prefrontal excitability, including expression of the α7nAChR (22% and 17% reductions at PD2 and PD56-80), expression of mGluR2 (31% and 24% reductions at ED21 and PD56-80), dendritic spine density (11-14% decrease at PD56-80), subsensitive mesolimbic stimulation of glutamate release in PFC, and reversal/extra-dimensional shift deficits in the prefrontally-mediated set-shifting task. These results highlight the deleterious impact of elevated KYNA levels during sensitive periods of early development, which model the pathophysiological and cognitive deficits seen in SZ.
AB - The levels of kynurenic acid (KYNA), an endogenous negative modulator of alpha7 nicotinic acetylcholine receptors (α7nAChRs), are elevated in the brains of patients with schizophrenia (SZ). We reported that increases of brain KYNA in rats, through dietary exposure to its precursor kynurenine from embryonic day (ED)15 to postnatal day (PD) 21, result in neurochemical and cognitive deficits in adulthood. The present experiments focused on the effects of prenatal exposure to elevated kynurenine on measures of prefrontal excitability known to be impaired in SZ. Pregnant dams were fed a mash containing kynurenine (100 mg/day; progeny = EKYNs) from ED15 until ED22. Controls were fed an unadulterated mash (progeny = ECONs). The dietary loading procedure elevated maternal and fetal plasma kynurenine (2223% and 693% above controls, respectively) and increased fetal KYNA (forebrain; 500% above controls) on ED21. Elevations in forebrain KYNA disappeared after termination of the loading (PD2), but KYNA levels in the prefrontal cortex (PFC) were unexpectedly increased again when measured in adults (PD56-80; 75% above controls). We also observed changes in several markers of prefrontal excitability, including expression of the α7nAChR (22% and 17% reductions at PD2 and PD56-80), expression of mGluR2 (31% and 24% reductions at ED21 and PD56-80), dendritic spine density (11-14% decrease at PD56-80), subsensitive mesolimbic stimulation of glutamate release in PFC, and reversal/extra-dimensional shift deficits in the prefrontally-mediated set-shifting task. These results highlight the deleterious impact of elevated KYNA levels during sensitive periods of early development, which model the pathophysiological and cognitive deficits seen in SZ.
KW - Alpha7 nicotinic receptors
KW - Glutamate
KW - Kynurenic acid
KW - Prefrontal cortex
KW - Schizophrenia
KW - Set-shifting
UR - http://www.scopus.com/inward/record.url?scp=84914163967&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84914163967&partnerID=8YFLogxK
U2 - 10.1016/j.neuropharm.2014.10.017
DO - 10.1016/j.neuropharm.2014.10.017
M3 - Article
C2 - 25446576
AN - SCOPUS:84914163967
SN - 0028-3908
VL - 90
SP - 33
EP - 41
JO - Neuropharmacology
JF - Neuropharmacology
ER -