Electrochemical Aptamer-Based Sensors for Improved Therapeutic Drug Monitoring and High-Precision, Feedback-Controlled Drug Delivery

Philippe Dauphin-Ducharme, Kyungae Yang, Netzahualcoýotl Arroyo-Currás, Kyle L. Ploense, Yameng Zhang, Julian Gerson, Martin Kurnik, Tod E. Kippin, Milan N. Stojanovic, Kevin W. Plaxco

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


The electrochemical aptamer-based (E-AB) sensing platform appears to be a convenient (rapid, single-step, and calibration-free) and modular approach to measure concentrations of specific molecules (irrespective of their chemical reactivity) directly in blood and even in situ in the living body. Given these attributes, the platform may thus provide significant opportunities to render therapeutic drug monitoring (the clinical practice in which dosing is adjusted in response to plasma drug measurements) as frequent and convenient as the measurement of blood sugar has become for diabetics. The ability to measure arbitrary molecules in the body in real time could even enable closed-loop feedback control over plasma drug levels in a manner analogous to the recently commercialized controlled blood sugar systems. As initial exploration of this, we describe here the selection of an aptamer against vancomycin, a narrow therapeutic window antibiotic for which therapeutic monitoring is a critical part of the standard of care, and its adaptation into an electrochemical aptamer-based (E-AB) sensor. Using this sensor, we then demonstrate: (i) rapid (seconds) and convenient (single-step and calibration-free) measurement of plasma vancomycin in finger-prick-scale samples of whole blood, (ii) high-precision measurement of subject-specific vancomycin pharmacokinetics (in a rat animal model), and (iii) high-precision, closed-loop feedback control over plasma levels of the drug (in a rat animal model). The ability to not only track (with continuous-glucose-monitor-like measurement frequency and convenience) but also actively control plasma drug levels provides an unprecedented route toward improving therapeutic drug monitoring and, more generally, the personalized, high-precision delivery of pharmacological interventions.

Original languageEnglish (US)
Pages (from-to)2832-2837
Number of pages6
JournalACS sensors
Issue number10
StatePublished - Oct 25 2019


  • DNA aptamer
  • controlled drug delivery
  • electrochemical DNA biosensor
  • square-wave voltammetry
  • therapeutic drug monitoring
  • vancomycin

ASJC Scopus subject areas

  • Bioengineering
  • Instrumentation
  • Process Chemistry and Technology
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Electrochemical Aptamer-Based Sensors for Improved Therapeutic Drug Monitoring and High-Precision, Feedback-Controlled Drug Delivery'. Together they form a unique fingerprint.

Cite this