TY - JOUR
T1 - Efficacy of amodiaquine, sulphadoxine-pyrimethamine and their combination for the treatment of uncomplicated Plasmodium falciparum malaria in children in Cameroon at the time of policy change to artemisinin-based combination therapy
AU - Mbacham, Wilfred F.
AU - Evehe, Marie Solange B.
AU - Netongo, Palmer M.
AU - Ateh, Isabel A.
AU - Mimche, Patrice N.
AU - Ajua, Anthony
AU - Nji, Akindeh M.
AU - Irenee, Domkam
AU - Echouffo-Tcheugui, Justin B.
AU - Tawe, Bantar
AU - Hallett, Rachel
AU - Roper, Cally
AU - Targett, Geoffrey
AU - Greenwood, Brian
N1 - Funding Information:
This study was supported by a sub-grant to WFM (ITDC VG 34), from the Gates Malaria Partnership at the London School of Hygiene and Tropical Medicine, which received support from the Bill and Melinda Gates Foundation, USA. Additional financial support for equipment was provided by the International Atomic Energy, Agency (IAEA) grant number RAF6/0/25, Vienna. We thank the trial’s safety monitor, Prof Roger Somo Moyou and members of the Data Safety and Monitoring Board at the LSHTM for their support.
PY - 2010
Y1 - 2010
N2 - Background. The efficacy of amodiaquine (AQ), sulphadoxine-pyrimethamine (SP) and the combination of SP+AQ in the treatment of Cameroonian children with clinical malaria was investigated. The prevalence of molecular markers for resistance to these drugs was studied to set the baseline for surveillance of their evolution with time. Methods. Seven hundred and sixty children aged 6-59 months with uncomplicated falciparum malaria were studied in three ecologically different regions of Cameroon - Mutengene (littoral equatorial forest), Yaoundé (forest-savannah mosaic) and Garoua (guinea-savannah). Study children were randomized to receive either AQ, SP or the combination AQ+SP. Clinical outcome was classified according to WHO criteria, as either early treatment failure (ETF), late clinical failure (LCF), late parasitological failure (LPF) or adequate clinical and parasitological response (ACPR). The occurrence of mutations in pfcrt, pfmdr1, dhfr and dhps genes was studied by either RFLP or dot blot techniques and the prevalence of these mutations related to parasitological and therapeutic failures. Results. After correction for the occurrence of re-infection by PCR, ACPRs on day 28 for AQ, SP and AQ+SP were 71.2%, 70.1% and 80.9%, in Garoua, 79.2%, 62.5%, and 81.9% in Mutengene, and 80.3%, 67.5% and 76.2% in Yaoundé respectively. High levels of Pfcrt 76T (87.11%) and Pfmdr1 86Y mutations (73.83%) were associated with quinoline resistance in the south compared to the north, 31.67% (76T) and 22.08% (86Y). There was a significant variation (p < 0.001) of the prevalence of the SGK haplotype between Garoua in the north (8.33%), Yaoundé (36.29%) in the savannah-forest mosaic and Mutengene (66.41%) in the South of Cameroon and a weak relation between SGK haplotype and SP failure. The 540E mutation on the dhps gene was extremely rare (0.3%) and occurred only in Mutengene while the pfmdr1 1034K and 1040D mutations were not detected in any of the three sites. Conclusion. In this study the prevalence of molecular markers for quinoline and anti-folate resistances showed high levels and differed between the south and north of Cameroon. AQ, SP and AQ+SP treatments were well tolerated but with low levels of efficacy that suggested alternative treatments were needed in Cameroon since 2005.
AB - Background. The efficacy of amodiaquine (AQ), sulphadoxine-pyrimethamine (SP) and the combination of SP+AQ in the treatment of Cameroonian children with clinical malaria was investigated. The prevalence of molecular markers for resistance to these drugs was studied to set the baseline for surveillance of their evolution with time. Methods. Seven hundred and sixty children aged 6-59 months with uncomplicated falciparum malaria were studied in three ecologically different regions of Cameroon - Mutengene (littoral equatorial forest), Yaoundé (forest-savannah mosaic) and Garoua (guinea-savannah). Study children were randomized to receive either AQ, SP or the combination AQ+SP. Clinical outcome was classified according to WHO criteria, as either early treatment failure (ETF), late clinical failure (LCF), late parasitological failure (LPF) or adequate clinical and parasitological response (ACPR). The occurrence of mutations in pfcrt, pfmdr1, dhfr and dhps genes was studied by either RFLP or dot blot techniques and the prevalence of these mutations related to parasitological and therapeutic failures. Results. After correction for the occurrence of re-infection by PCR, ACPRs on day 28 for AQ, SP and AQ+SP were 71.2%, 70.1% and 80.9%, in Garoua, 79.2%, 62.5%, and 81.9% in Mutengene, and 80.3%, 67.5% and 76.2% in Yaoundé respectively. High levels of Pfcrt 76T (87.11%) and Pfmdr1 86Y mutations (73.83%) were associated with quinoline resistance in the south compared to the north, 31.67% (76T) and 22.08% (86Y). There was a significant variation (p < 0.001) of the prevalence of the SGK haplotype between Garoua in the north (8.33%), Yaoundé (36.29%) in the savannah-forest mosaic and Mutengene (66.41%) in the South of Cameroon and a weak relation between SGK haplotype and SP failure. The 540E mutation on the dhps gene was extremely rare (0.3%) and occurred only in Mutengene while the pfmdr1 1034K and 1040D mutations were not detected in any of the three sites. Conclusion. In this study the prevalence of molecular markers for quinoline and anti-folate resistances showed high levels and differed between the south and north of Cameroon. AQ, SP and AQ+SP treatments were well tolerated but with low levels of efficacy that suggested alternative treatments were needed in Cameroon since 2005.
UR - http://www.scopus.com/inward/record.url?scp=77649321526&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77649321526&partnerID=8YFLogxK
U2 - 10.1186/1475-2875-9-34
DO - 10.1186/1475-2875-9-34
M3 - Article
C2 - 20105282
AN - SCOPUS:77649321526
SN - 1475-2875
VL - 9
JO - Malaria Journal
JF - Malaria Journal
IS - 1
M1 - 34
ER -