Effects of size and load on transport properties of nanoscale metal-oxide interfaces

Ramsey Kraya

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations


With interface sizes rapidly reducing to the nanometer scale, it has become vital to understand how size and structure can affect transport behavior between materials in order to tune the energy barrier for various applications. Here, the fabrication of Schottky Barriers between Au nanoparticles and doped SrTiO 3 materials is reported. The effect of nanoparticle size on the transport properties is clearly evident providing an excellent opportunity to compare new theory on transport characteristics at the nanoscale to classical theory to determine the method that is most effective in predicting nanoscale transport properties.

Original languageEnglish (US)
Title of host publicationFunctional Metal Oxide Nanostructures
Number of pages5
StatePublished - Aug 20 2012
Event2011 MRS Fall Meeting - Boston, MA, United States
Duration: Nov 28 2011Dec 2 2011

Publication series

NameMaterials Research Society Symposium Proceedings
ISSN (Print)0272-9172


Other2011 MRS Fall Meeting
Country/TerritoryUnited States
CityBoston, MA

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Effects of size and load on transport properties of nanoscale metal-oxide interfaces'. Together they form a unique fingerprint.

Cite this