Abstract
Agents that antagonize the glutamatergic N-methyl-d-aspartate (NMDA) receptor, such as phenylcyclidine (PCP) and ketamine, produce a behavioral state in healthy volunteers that resembles some aspects of schizophrenia. A dysfunction in NMDA-dopaminergic interactions has been proposed as a mechanism for these behavioral effects. In this study, we examined the effects of ketamine on striatal dopamine release in healthy human subjects with a novel 11C-raclopride/PET displacement paradigm and compared these effects to administration of saline and the direct-acting dopamine agonist amphetamine. We found that the percent decreases (mean ± SD) in specific 11C-raclopride binding from baseline for ketamine (11.2 ± 8.9) was greater than for saline (1.9 ± 3.7) (t = 2.4, df = 13, P = 0.003) indicating that ketamine caused increases in striatal synaptic dopamine concentrations. Ketamine-related binding changes were not significantly different than the decreases in percent change (mean ± SD) in specific 11C-raclopride binding caused by amphetamine (15.5 ± 6.2) (t = 1.3, df = 19, P = 0.21). Ketamine- induced changes in 11C-raclopride-specific binding were significantly correlated with induction of schizophrenia-like symptoms. The implications of this brain imaging method for studies of schizophrenia and the mechanism of action of antipsychotic drugs are discussed.
Original language | English (US) |
---|---|
Pages (from-to) | 142-147 |
Number of pages | 6 |
Journal | Synapse |
Volume | 29 |
Issue number | 2 |
DOIs | |
State | Published - Jun 1998 |
Externally published | Yes |
Keywords
- C-raclopride
- Dopamine
- Glutamate
- NMDA
- Positron emission tomography
- Schizophrenia
ASJC Scopus subject areas
- Neuroscience(all)
- Physiology
- Pharmacology