TY - JOUR
T1 - Effects of long non-coding RNA uc.245 on cardiomyocyte-like differentiation in P19 cells via FOG2
AU - Liu, Heng
AU - Hu, Yin
AU - Yin, Jing
AU - Yan, Xiangyun
AU - Chen, Wenjuan
AU - Wang, Xingyun
AU - Han, Shuping
AU - Yu, Zhangbin
AU - Li, Mengmeng
N1 - Funding Information:
This work was supported by a grant from the National Natural Science Foundation of China (No. 81600257 ; 81470376 ) and the Nanjing Medical Science and Technology Development Fund ( YKK15158 ), China.
Publisher Copyright:
© 2019
PY - 2019/4/30
Y1 - 2019/4/30
N2 - Each year, cardiac diseases may cause a high morbidity and mortality worldwide. Long non-coding RNAs (lncRNAs) that contained ultra-conserved elements (UCEs) may play important roles on cardiomyocytes differentiation. Further investigations underlying mechanisms of lncRNA-UC regulating embryonic heart development are necessary. In this study, we investigated the effects of lnc-uc.245 on proliferation, migration, apoptosis, and cardiomyocyte-like differentiation in P19 cells with DMSO stimulation, and hypothesized that lnc-uc.245 would influence cardiomyocytes differentiation via FOG2. Lentiviral vectors of pGPU6/GFP/Neo-uc.245 and pGPU6/GFP/Neo-shRNA-uc.245 were respectively transfected into P19 cells to overexpress or silence uc.245. MTT assay, Annexin V-FITC/PI double-staining, scratch test and transwell assay were performed and the results showed that uc.245 overexpression could significantly suppress P19 cell proliferation, migration, cardiomyocyte-like differentiation but promote cell apoptosis. Contrarily, sh-uc.245 treatment caused the opposite changes. Uc.245 overexpression obviously downregulated the expression of cardiomyogenic-specific molecular markers (cTnI, ANP, α-MHC, Nkx2.5, GATA4, MEF2C) but remarkably upregulated the expression of FOG2. Subsequently, we transfected the recombinant vectors loaded FOG2 or shRRNA-FOG2 into P19 cells to further address the functional significance of FOG2 in uc.245-regulated cardiomyocyte-like differentiation. Interestingly, we found that overexpressing of FOG2 promoted cell proliferation, migration, and inhibited apoptosis both in uc.245 overexpressed and silenced P19 cells, especially in uc.245 silenced cell line. In addition, sh-FOG2 promoted cardiomyocyte-like differentiation and upregulated the expression of cardiomyogenic-specific markers at the gene and protein levels both in uc.245 overexpressed and silenced P19 cells. Similarly, this upregulation effect of sh-FOG2 was more obvious after uc.245 silencing. These findings suggest that FOG2 is a key mediator during uc.245-regulated differentiation of P19 cells into cardiomyocytes. It is expected that lnc-uc.245/FOG2 will become a promising therapeutic target for cardiac diseases.
AB - Each year, cardiac diseases may cause a high morbidity and mortality worldwide. Long non-coding RNAs (lncRNAs) that contained ultra-conserved elements (UCEs) may play important roles on cardiomyocytes differentiation. Further investigations underlying mechanisms of lncRNA-UC regulating embryonic heart development are necessary. In this study, we investigated the effects of lnc-uc.245 on proliferation, migration, apoptosis, and cardiomyocyte-like differentiation in P19 cells with DMSO stimulation, and hypothesized that lnc-uc.245 would influence cardiomyocytes differentiation via FOG2. Lentiviral vectors of pGPU6/GFP/Neo-uc.245 and pGPU6/GFP/Neo-shRNA-uc.245 were respectively transfected into P19 cells to overexpress or silence uc.245. MTT assay, Annexin V-FITC/PI double-staining, scratch test and transwell assay were performed and the results showed that uc.245 overexpression could significantly suppress P19 cell proliferation, migration, cardiomyocyte-like differentiation but promote cell apoptosis. Contrarily, sh-uc.245 treatment caused the opposite changes. Uc.245 overexpression obviously downregulated the expression of cardiomyogenic-specific molecular markers (cTnI, ANP, α-MHC, Nkx2.5, GATA4, MEF2C) but remarkably upregulated the expression of FOG2. Subsequently, we transfected the recombinant vectors loaded FOG2 or shRRNA-FOG2 into P19 cells to further address the functional significance of FOG2 in uc.245-regulated cardiomyocyte-like differentiation. Interestingly, we found that overexpressing of FOG2 promoted cell proliferation, migration, and inhibited apoptosis both in uc.245 overexpressed and silenced P19 cells, especially in uc.245 silenced cell line. In addition, sh-FOG2 promoted cardiomyocyte-like differentiation and upregulated the expression of cardiomyogenic-specific markers at the gene and protein levels both in uc.245 overexpressed and silenced P19 cells. Similarly, this upregulation effect of sh-FOG2 was more obvious after uc.245 silencing. These findings suggest that FOG2 is a key mediator during uc.245-regulated differentiation of P19 cells into cardiomyocytes. It is expected that lnc-uc.245/FOG2 will become a promising therapeutic target for cardiac diseases.
KW - Cardiac diseases
KW - Cardiomyocyte-like differentiation
KW - FOG2
KW - P19 cells
KW - lnc-uc.245
UR - http://www.scopus.com/inward/record.url?scp=85061247252&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85061247252&partnerID=8YFLogxK
U2 - 10.1016/j.gene.2018.12.080
DO - 10.1016/j.gene.2018.12.080
M3 - Article
C2 - 30716443
AN - SCOPUS:85061247252
SN - 0378-1119
VL - 694
SP - 83
EP - 92
JO - Gene
JF - Gene
ER -