TY - JOUR
T1 - Effects of immunomodulatory and organism-associated molecules on the permeability of an In Vitro blood-brain barrier model to amphotericin B and fluconazole
AU - Pyrgos, Vasilios
AU - Mickiene, Diane
AU - Sein, Tin
AU - Cotton, Margaret
AU - Fransesconi, Andrea
AU - Mizrahi, Isaac
AU - Donoghue, Martha
AU - Bundrant, Nikkida
AU - Kim, Su Young
AU - Hardwick, Matthew
AU - Shoham, Shmuel
AU - Walsh, Thomas J.
PY - 2010/3
Y1 - 2010/3
N2 - Amphotericin B (AMB) is used to treat fungal infections of the central nervous system (CNS). However, AMB shows poor penetration into the CNS and little is known about the factors affecting its permeation through the blood-brain barrier (BBB). Therefore, we studied immunomodulatory and organism-associated molecules affecting the permeability of an in vitro BBB model to AMB. We examined the effects of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), lipopolysaccharide (LPS), lipoteichoic acid (LTA), zymosan (ZYM), dexamethasone (DEX), cyclosporine, and tacrolimus on transendothelial electrical resistance (TEER); endothelial tight junctions; filamentous actin; and permeability to deoxycholate AMB (DAMB), liposomal AMB (LAMB), and fluconazole. Proinflammatory cytokines and organism-associated molecules significantly decreased the mean TEER by 40.7 to 100% (P ≤ 0.004). DEX increased the mean TEER by 18.2 to 26.4% (P ≤ 0.04). TNF-α and LPS increased the permeability to AMB by 8.2 to 14.5% compared to that for the controls (1.1 to 2.4%) (P ≤ 0.04). None of the other molecules affected the model's permeability to AMB. By comparison, the BBB model's permeability to fluconazole was >78% under all conditions studied, without significant differences between the controls and the experimental groups. LPS and TNF-α decreased tightjunction protein zona occludens 1 (ZO-1) between endothelial cells. In conclusion, IL-1β, ZYM, and LTA increased the permeability of the BBB to small ions but not to AMB, whereas TNF-α and LPS, which disrupted the endothelial layer integrity, increased the permeability to AMB.
AB - Amphotericin B (AMB) is used to treat fungal infections of the central nervous system (CNS). However, AMB shows poor penetration into the CNS and little is known about the factors affecting its permeation through the blood-brain barrier (BBB). Therefore, we studied immunomodulatory and organism-associated molecules affecting the permeability of an in vitro BBB model to AMB. We examined the effects of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), lipopolysaccharide (LPS), lipoteichoic acid (LTA), zymosan (ZYM), dexamethasone (DEX), cyclosporine, and tacrolimus on transendothelial electrical resistance (TEER); endothelial tight junctions; filamentous actin; and permeability to deoxycholate AMB (DAMB), liposomal AMB (LAMB), and fluconazole. Proinflammatory cytokines and organism-associated molecules significantly decreased the mean TEER by 40.7 to 100% (P ≤ 0.004). DEX increased the mean TEER by 18.2 to 26.4% (P ≤ 0.04). TNF-α and LPS increased the permeability to AMB by 8.2 to 14.5% compared to that for the controls (1.1 to 2.4%) (P ≤ 0.04). None of the other molecules affected the model's permeability to AMB. By comparison, the BBB model's permeability to fluconazole was >78% under all conditions studied, without significant differences between the controls and the experimental groups. LPS and TNF-α decreased tightjunction protein zona occludens 1 (ZO-1) between endothelial cells. In conclusion, IL-1β, ZYM, and LTA increased the permeability of the BBB to small ions but not to AMB, whereas TNF-α and LPS, which disrupted the endothelial layer integrity, increased the permeability to AMB.
UR - http://www.scopus.com/inward/record.url?scp=77149135234&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77149135234&partnerID=8YFLogxK
U2 - 10.1128/AAC.01263-09
DO - 10.1128/AAC.01263-09
M3 - Article
C2 - 19995929
AN - SCOPUS:77149135234
SN - 0066-4804
VL - 54
SP - 1305
EP - 1310
JO - Antimicrobial agents and chemotherapy
JF - Antimicrobial agents and chemotherapy
IS - 3
ER -